Skip to main content
Log in

Ammonia and Manganese Increase Arginine Uptake in Cultured Astrocytes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Recent work has suggested a possible role for nitric oxide (NO) in the development of hepatic encephalopathy (HE). In this study, we examined the effect of ammonia and manganese, factors implicated in the pathogenesis of HE, on the transport of arginine (a precursor of NO) into primary cultures of astrocytes. Treatment with 5 mM ammonia for 1–4 days produced a maximal (53%) increase in L-arginine uptake at 3 days when compared to untreated cells. Kinetic analysis following 4-day treatment with 5 mM ammonia revealed an 82% increase in the Vmax and a 61% increase in the Km, value. Similar analysis with 100 μM manganese showed a 101% increase in Vmax and a 131% increase in the Km value. These results suggest that both manganese and ammonia alter L-arginine uptake by modifying the transporter for arginine. A decrease of 32% in the non-saturable component of L-arginine transport was also observed following treatment with ammonia. When cultures were treated separately with 5 mM ammonia and 100 μM manganese for 2 days, the uptake of L-arginine increased by 41% and 57%, respectively. Combined exposure led to no further increase in uptake. Our results suggest that ammonia and manganese may contribute to the pathogenesis of HE by influencing arginine transport and thus possibly NO synthesis in astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Norenberg, M. D., Mozes, L. W., Norenberg, L. O. B., and Gregorios, J. B. 1986. Effects of ammonia in primary astrocyte cultures: Morphological and biochemical considerations. Pages 353–362, in Grisar, T., Franck, G., Hertz, L., Norton, W. T., Sensenbrenner, M., and Woodbury, D. M. (eds.), Dynamic Properties of Glia cells II: Cellular and Molecular Aspects, Pergamon Press, Oxford.

    Google Scholar 

  2. Jessy, J., Mans, A. M., DeJoseph, M. R., and Hawkins, R. A. 1990. Hyperammonaemia causes many of the changes found after portacaval shunting. Biochem. J. 272:311–317.

    PubMed  Google Scholar 

  3. Pomier Layrargues, G., Spahr, L., and Butterworth, R. F. 1995. Increased manganese concentrations in pallidum of cirrhotic patients. Lancet 345:735.

    Google Scholar 

  4. Krieger, D., Krieger, S., Jansen, O., Gass, P., Theilmann, L., and Lichtnecker, H. 1995. Manganese and chronic hepatic encephalopathy. Lancet 346:270–274.

    PubMed  Google Scholar 

  5. Kulisevsky, J., Pujol, J., Junque, C., Deus, J., Balanzo, J., and Capdevila, A. 1993. MRI pallidal hyperintensity and brain atrophy in cirrhotic patients: two different MRI patterns of clinical deterioration? Neurology 43:2570–2573.

    PubMed  Google Scholar 

  6. Inoue, E., Hori, S., Narumi, Y., Fujita, M., Kuriyama, K., Kadota, T., and Kuroda, C. H. 1991. Portal-systemic encephalopathy: presence of basal ganglia lesions with high signal intensity on MRI images. Radiology 179:551–555.

    PubMed  Google Scholar 

  7. Norenberg, M. D. 1987. The role of astrocytes in hepatic encephalopathy. Neurochem. Pathol. 6:13–34.

    PubMed  Google Scholar 

  8. Gregorios, J. B., Mozes, L. W., Norenberg, L. O. B., and Norenberg, M. D. 1985. Morphologic effects of ammonia on primary astrocyte cultures. I. Light microscopic studies. J. Neuropathol. Exp. Neurol. 44:397–403.

    PubMed  Google Scholar 

  9. Gregorios, J. B., Mozes, L. W., and Norenberg, M. D. 1985. Morphologic effects of ammonia on primary astrocyte cultures. II. Electron microscopic studies. J. Neuropathol. Exp. Neurol. 44:404–414.

    PubMed  Google Scholar 

  10. Aschner, M., Gannon, M., and Kimelberg, H. K. 1992. Manganese uptake and efflux in cultured rat astrocytes. J. Neurochem. 58:730–735.

    PubMed  Google Scholar 

  11. Tholey, G., Ledig, M., Mandel, P., Sargentini, L., Frivold, A. H., Leroy, M., Grippo, A. A., and Wedler, F. C. 1987. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem. Res. 12:45–50.

    Google Scholar 

  12. Pentschew, A., Ebner, F. F., and Kovatch, R. M. 1963. Experimental manganese encephalopathy in monkeys: a preliminary report. J. Neuropathol. Exp. Neurol. 22:488–499.

    PubMed  Google Scholar 

  13. Rao, V. L. R., Audet, R. M., and Butterworth, R. F. 1995. Increased nitric oxide synthase activities and L-[3H] arginine uptake in brain following portacaval anastomosis. J. Neurochem. 65:677–681.

    PubMed  Google Scholar 

  14. Norenberg, M. D., and Itzhak, Y. 1995. Acute liver failure and hyperammonemia increase nitric oxide synthase in mouse brain. Soc. Neurosci. Absts. 21:869.

    Google Scholar 

  15. Kosenko, E., Kaminsky, Y., Grau, E., Miñana, M.-D., Grisolía, S., and Felipo, V. 1995. Nitroarginine, an inhibitor of nitric oxide synthetase, attenuates ammonia toxicity and ammonia-induced alterations in brain metabolism. Neurochem. Res. 20:381–386.

    Google Scholar 

  16. Palmer, R. M. J., Ashton, D. S., and Moncada, S. 1988. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666.

    Article  PubMed  Google Scholar 

  17. Knowles, R. G., Palacios, M., Palmer, R. M. J., and Moncada, S. 1989. Formation of nitric oxide from L-arginine in the central nervous system: a transduction mechanism for the stimulation of the soluble guanylate cyclase. Proc. Natl. Acad. Sci. USA 86:5159–5162.

    PubMed  Google Scholar 

  18. Garthwaite, J., Garthwaite, G., Palmer, R. M. J., and Moncada, S. 1989. NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J. Pharmacol. 172:413–416.

    PubMed  Google Scholar 

  19. Lajtha, A., and Sershen, H. 1974. Substrate specificity of uptake of diamines in mouse brain slices. Arch. Biochem. Biophys. 165:539–547.

    PubMed  Google Scholar 

  20. Christensen, H. N. 1990. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol. Rev. 70:43–77.

    PubMed  Google Scholar 

  21. Kim, J. W., Closs, E. I., Albritton, L. M., and Cunningham, J. M. 1991. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature 352:725–728.

    Article  PubMed  Google Scholar 

  22. Wang, H., Kavanaugh, M. P., North, R. A., and Kabat, D. 1991. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature 352:729–731.

    Article  PubMed  Google Scholar 

  23. Closs, E. I., Albritton, L. M., Kim, J. W., and Cunningham, J. M. 1993. Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J. Biol. Chem. 268:7538–7544.

    PubMed  Google Scholar 

  24. Hazell, A. S., and Norenberg, M. D. 1996. Ammonia and manganese increase arginine uptake in cultured astrocytes. J. Neurochem. 66:S69.

    Google Scholar 

  25. Booher, J., and Sensenbrenner, M. 1972. Growth and cultivation of dissociated neurons and glial cells from embryonic chick, rat, and human brain in flask cultures. Neurobiol. 2:97–105.

    Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  27. Merrill, J., and Murphy, S. 1996. Nitric oxide. Pages 263–281, in Aschner, M., and Kimelberg, H. K. (eds.), The Role of Glia in Neurotoxicity, CRC Press, Boca Raton.

    Google Scholar 

  28. Rao, V. L. R., Audet, R. M., and Butterworth, R. F. 1997. Portacaval shunting and hyperammonemia stimulate the uptake of L-[3H] arginine but not of L-[3H]nitroarginine into rat brain synaptosomes. J. Neurochem. 68:337–343.

    PubMed  Google Scholar 

  29. Schmidlin, A., and Wiesinger, H. 1994. Transport of L-arginine in cultured glial cells. Glia 11:262–268.

    PubMed  Google Scholar 

  30. Schmidlin, A., and Wiesinger, H. 1995. Stimulation of arginine transport and nitric oxide production by lipopolysaccharide is mediated by different signaling pathways in astrocytes. J. Neurochem. 65:590–594.

    PubMed  Google Scholar 

  31. Chesney, R. W., Jolly, K., Zelikovic, I., Iwahashi, C., and Lohstroh, P. 1989. Increased Na+-taurine symporter in rat renal brush border membranes: Preformed or newly synthesized? FASEB J. 3:2081–2085.

    PubMed  Google Scholar 

  32. O'Connor, J. E., Guerri, C., and Grisolia, S. 1984. Effects of ammonia on synaptosomal membranes. Biochem. Biophys. Res. Commun. 119:516–523.

    PubMed  Google Scholar 

  33. Lenaz, G., Curatola, G., and Masotti, L. 1975. Perturbation of membrane fluidity. J. Bioenerg. 7:223–299.

    Google Scholar 

  34. Konji, V., Montag, A., Sandri, G., Nordenbrand, K., and Ernster, L. 1985. Transport of Ca2+ and Mn2+ by mitochondria from rat liver, heart and brain. Biochimie 67:1241–1250.

    PubMed  Google Scholar 

  35. Casado, M., Zafra, F., Aragón, C., and Giménez, C. 1991. Activation of high-affinity uptake of glutamate by phorbol esters in primary glial cell cultures. J. Neurochem. 57:1185–1190.

    PubMed  Google Scholar 

  36. Casado, M., Bendahan, A., Zafra, F., Danbolt, N. C., Aragón, C., and Giménez, C., and Kanner, B. I. 1993. Phosphorylation and modulation of brain glutamate transporters by protein kinase C. J. Biol. Chem. 268:27313–27317.

    PubMed  Google Scholar 

  37. Dowd, L. A., and Robinson, M. B. 1996. Rapid stimulation of EAAC1–mediated Na+-dependent L-glutamate transport activity in C6 glioma cells by phorbol ester. J. Neurochem. 67:508–516.

    PubMed  Google Scholar 

  38. Klarlund, J. K., Bradford, A. P., Milla, M. G., and Czech, M. P. 1990. Purification of a novel insulin-stimulated protein kinase from rat liver. J. Biol. Chem. 265:227.

    PubMed  Google Scholar 

  39. Koland, J. G., and Cerione, R. A. 1990. Activation of the EGF receptor tyrosine kinase by divalent metal ions: comparison of holoreceptor and isolated kinase domain properties. Biochim. Biophys. Acta 1052:489–498.

    Article  PubMed  Google Scholar 

  40. Kanamori, K., and Ross, B. D. 1997. Glial alkalinization detected in vivo by 1H-15H heteronuclear multiple-quantum coherence-transfer NMR in severely hyperammonemic rat. J. Neurochem. 68:1209–1220.

    PubMed  Google Scholar 

  41. Albrecht, J., Hilgier, W., and Rafalowska, U. 1990. Activation of arginine metabolism to glutamate in rat brain synaptosomes in thioacetamide-induced hepatic encephalopathy: an adaptive response? J. Neurosci. Res. 25:125–130.

    PubMed  Google Scholar 

  42. Albrecht, J., and Hilgier, W. 1986. Arginine in thioacetamide-induced hepatogenic encephalopathy in rats: activation of enzymes of arginine metabolism to glutamate. Acta Neurol. Scand. 73:498–501.

    PubMed  Google Scholar 

  43. Lavoie, J., Giguere, J. F., Pomier Layrargues, G., and Butterworth, R. F. 1987. Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J. Neurochem. 49:692–697.

    PubMed  Google Scholar 

  44. Mans, A. M., DeJoseph, M. R., and Hawkins, R. A. 1994. Metabolic abnormalities and grade of encephalopathy in acute hepatic failure. J. Neurochem. 63:1829–1838.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazell, A.S., Norenberg, M.D. Ammonia and Manganese Increase Arginine Uptake in Cultured Astrocytes. Neurochem Res 23, 869–873 (1998). https://doi.org/10.1023/A:1022411012512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022411012512

Navigation