Skip to main content
Log in

Pre-Clinical Applications of Transgenic Mouse Mammary Cancer Models

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Breast cancer is a leading cause of cancer morbidity and mortality. Given that the majority of human breast cancers appear to be due to non-genetic factors, identifying agents and mechanisms of prevention is key to lowering the incidence of cancer. Genetically engineered mouse models of mammary cancer have been important in elucidating molecular pathways and signaling events associated with the initiation, promotion, and the progression of cancer. Since several transgenic mammary models of human breast cancer progress through well-defined cancer stages, they are useful pre-clinical systems to test the efficacy of chemopreventive and chemotherapeutic agents. This review outlines several oncogenic pathways through which mammary cancer can be induced in transgenic models and describes several types of preventive and therapeutic agents that have been tested in transgenic models of mammary cancer. The effectiveness of farnesyl inhibitors, aromatase inhibitors, differentiating agents, polyamine inhibitors, anti-angiogenic inhibitors, and immunotherapeutic compounds including vaccines have been evaluated in reducing mammary cancer and tumor progression in transgenic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adjei AA (2001) Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 93: 1062–1074.

    Google Scholar 

  • Amici A, Venanzi FM and Concetti A (1998) Genetic immunization against neu/erbB2 transgenic breast cancer. Cancer Immunol Immunother 47: 183–190.

    Google Scholar 

  • Auvinen PK, Lipponen PK, Kataja VV, Johansson RT and Syrjanen KJ (1996) Prognostic significance of TGF-alpha expression in breast cancer. Acta Oncol 35: 995–998.

    Google Scholar 

  • Barnes DM and Gillett CE (1998) Cyclin D1 in breast cancer. Breast Cancer Res Treat 52: 1–15.

    Google Scholar 

  • Barrington RE, Subler MA, Rands E, Omer CA, Miller PJ, Hundley JE et al. (1998) A farnesyltransferase inhibitor induces tumor regression in transgenic mice harboring multiple oncogenic muta-tions by mediating alterations in both cell cycle control and apoptosis. Mol Cell Biol 18: 85–92.

    Google Scholar 

  • Bocchinfuso WP, Hively WP, Couse JF, Varmus HE and Korach KS (1999) A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor-alpha. Cancer Res 59: 1869–1876.

    Google Scholar 

  • Boggio K, Di Carlo E, Rovero S, Cavallo F, Quaglino E, Lollini PL et al. (2000) Ability of systemic interleukin-12 to hamper progressive stages of mammary carcinogenesis in HER2/neu transgenic mice. Cancer Res 60: 359–364.

    Google Scholar 

  • Bortner DM and Rosenberg MP (1997) Induction of mammary gland hyperplasia and carcinomas in transgenic mice expressing human cyclin E. Mol Cell Biol 17: 453–459.

    Google Scholar 

  • Brandt R, Eisenbrandt R, Leenders F, Zschiesche W, Binas B, Juergensen C et al. (2000) Mammary gland specific hEGF receptor transgene expression induces neoplasia and inhibits differentiation. Oncogene 19: 2129–2137.

    Google Scholar 

  • Calvo A, Feldman AL, Libutti SK and Green JE (2002a) Adenovirus-mediated endostatin delivery results in inhibition of mammary gland tumor development in C3(1)/SV40 Tag transgenic mice. Cancer Res 62: 3934–3938.

    Google Scholar 

  • Calvo A, Smith LE, Ali I, Shih S, Yokoyama Y, Sundaram R et al. (2002b) Inhibition of the mammary gland adenocarcinoma an-giogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin. Int J Cancer, in press.

  • Cancer Facts and Figures (2000) American Cancer Society.

  • Cardiff RD, Anver MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ et al. (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19: 968–988.

    Google Scholar 

  • Casey G, Plummer S, Hoeltge G, Scanlon D, Fasching C and Stanbridge EJ (1993) Functional evidence for a breast cancer growth suppressor gene on chromosome 17. Hum Mol Genet 11: 1921–1927.

    Google Scholar 

  • Cefai D, Morrison BW, Sckell A, Favre L, Balli M, Leunig M et al. (1999) Targeting HER-2/neu for active-specific immunotherapy in a mouse model of spontaneous breast cancer. Int J Cancer 83: 393–400.

    Google Scholar 

  • Chan R, Muller WJ and Siegel PM (1999) Oncogenic activat-ing mutations in the neu/erbB-2 oncogene are involved in the induction of mammary tumors. Ann NY Acad Sci 889: 45–51.

    Google Scholar 

  • Chen Y, Hu D, Eling DJ, Robbins J and Kipps TJ (1998) DNA vaccines encoding full-length or truncated Neu induce protective immunity against Neu-expressing mammary tumors. Cancer Res 58: 1965–1971.

    Google Scholar 

  • Cifaldi L, Quaglino E, Di Carlo E, Musiani P, Spadaro M, Lollini PL et al. (2001) A light, nontoxic interleukin 12 protocol inhib-its HER-2/neu mammary carcinogenesis in BALB/c transgenic mice with established hyperplasia. Cancer Res 61: 2809–2812.

    Google Scholar 

  • Clarke R (1996) Animal models of breast cancer: their diversity and role in biomedical research. Breast Cancer Res Treat 39: 1–6.

    Google Scholar 

  • Cussac A, Climent MA, Soriano V, Poveda A, Fernandez Martos C, Guillem V et al. (2001) The third generation of aromatase inhibitors provide consistent activity in patients with advanced breast cancer refractory to selective estrogen receptor modulators. Abstract, Cancer Oncology Meeting, San Antonio, TX.

  • Dankort DL and Muller WJ (2000) Signal transduction in mam-mary tumorigenesis: a transgenic perspective. Oncogene 19: 1038–1044.

    Google Scholar 

  • Desai K, Xiao N, Wang W, Gangi L, Greene J, Powell JL etal.(2002) Initiating oncogenic event determines gene expression patterns of human breast cancer models. Proc Natl Acad Sci (USA) 99: 6967–6972.

    Google Scholar 

  • Di Carlo E, Diodoro MG, Boggio K, Modesti A, Modesti M, Nanni P et al. (1999) Analysis of mammary carcinoma onset and progression in HER-2/neu oncogene transgenic mice reveals a lobular origin. Lab Invest 79: 1261–1269.

    Google Scholar 

  • DiGiovanna MP, Lerman MA, Coffey RJ, Muller WJ, Cardiff RD and Stern DF (1998) Active signaling by Neu in transgenic mice. Oncogene 17: 1877–1884.

    Google Scholar 

  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery Jr CA, Butel JS et al. (1992) Mice deficient for p53 are develop-mentally normal but susceptible to spontaneous tumours. Nature 356: 215–221.

    Google Scholar 

  • Dougall WC and Greene MI (1994) Biological studies and poten-tial therapeutic applications of monoclonal antibodies and small molecules reactive with the neu/c-erbB-2 protein. Cell Biophys 24-25: 209–218.

    Google Scholar 

  • Emtage PC, Wan Y, Muller W, Graham FL and Gauldie J (1998) Enhanced interleukin-2 gene transfer immunotherapy of breast cancer by coexpression of B7-1 and B7-2. J Interferon Cytokine Res 18: 927–937.

    Google Scholar 

  • Esserman LJ, Lopez T, Montes R, Bald LN, Fendly BM and Campbell MJ (1999) Vaccination with the extracellular domain of p185neu prevents mammary tumor development in neu transgenic mice. Cancer Immunol Immunother 47: 337–342.

    Google Scholar 

  • Fernandes G, Chandrasekar B, Troyer DA, Venkatraman JT and Good RA (1995) Dietary lipids and calorie restriction affect mammary tumor incidence and gene expression in mouse mam-mary tumor virus/v-Ha-ras transgenic mice. Proc Natl Acad Sci USA 92: 6494–6498.

    Google Scholar 

  • Fisher B and Costantino JP (1999) RESPONSE: re: tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst 91: 1891A–1892.

    Google Scholar 

  • Friedrich K, Dimmer V, Haroske G, Lossnitzer A, Kasper M, Theissig F et al. (1995) Expression of p53 and bcl-2 in correlation to clinicopathological parameters, hormone receptor status and DNA ploidy in breast cancers. Pathol Res Pract 191: 1114–1121.

    Google Scholar 

  • Furth PA, Bar-Peled U, Li M, Lewis A, Laucirica R, Jager R et al. (1999) Loss of anti-mitotic effects of Bcl-2 with retention of anti-apoptotic activity during tumor progression in a mouse model. Oncogene 18: 6589–6596.

    Google Scholar 

  • Granovsky M, Fata J, Pawling J, Muller WJ, Khokha R and Dennis JW (2000) Suppression of tumor growth and metastasis in Mgat5-deficient mice. Nat Med 6: 306–312.

    Google Scholar 

  • Green JE, Shibata MA, Yoshidome K, Liu ML, Jorcyk C, Anver MR et al. (2000) The C3(1)/SV40 T-antigen transgenic mouse.631 model of mammary cancer: ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19: 1020–1027.

    Google Scholar 

  • Green JE, Shibata E, Shibata MA, Moon R, Anver M, Kelloff G et al. (2001) DFMO and DHEA inhibit mammary tumor progression but not initiation in C3(1)/SV40 T/t-antigen transgenic mice. Cancer Res 61: 7449–7455.

    Google Scholar 

  • Green JE URL: emice.nci.nih.gov (in preparation).

  • Guy CT, Cardiff RD and Muller WJ (1992) Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Bio l12: 954–961.

    Google Scholar 

  • Guy CT, Muthuswamy SK, Cardiff RD, Soriano P and Muller WJ (1994) Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev 8: 23–32.

    Google Scholar 

  • Guy CT, Cardiff RD and Muller WJ (1996) Activated neu induces rapid tumor progression. J Biol Chem 271: 7673–7678.

    Google Scholar 

  • Gyorffy S, Palmer K, Podor TJ, Hitt M and Gauldie J (2001) Combined treatment of a murine breast cancer model with type 5 adenovirus vectors expressing murine angiostatin and IL-12: a role for combined anti-angiogenesis and immunotherapy. J Immunol 166: 6212–6217.

    Google Scholar 

  • Hanahan D, Christofori G, Naik P and Arbeit J (1996) Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 32A: 2386–2393.

    Google Scholar 

  • Harper-Wynne C and Dowsett M (2001) Recent advances in the clinical application of aromatase inhibitors. J Steroid Biochem Mol Biol 76: 179–186.

    Google Scholar 

  • Harris RE, Kasbari S and Farrar WB (1999). Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncol Rep 6: 71–73.

    Google Scholar 

  • Heber D, Blackburn GL and Go VLW(1999) Nutritional Oncology. Academic Press.

  • Hennighausen L (2000) Mouse models for breast cancer. Oncogene 19: 966–967.

    Google Scholar 

  • Humphreys RC and Hennighausen L (2000) Transforming growth factor alpha and mouse models of human breast cancer. Oncogene 19: 1085–1091.

    Google Scholar 

  • Hursting SD, Slaga TJ, Fischer SM, DiGiovanni J and Phang JM (1999) Mechanism-based cancer prevention approaches: targets, examples, and the use of transgenic mice. J Natl Cancer Inst 91: 215–225.

    Google Scholar 

  • Husler MR, Kotopoulis KA, Sundberg JP, Tennent BJ, Kunig SV and Knowles BB (1998) Lactation-induced WAP-SV40 Tag transgene expression in C57BL/6J mice leads to mammary carcinoma. Transgenic Res 7: 253–263.

    Google Scholar 

  • Hutchinson, JN and Muller WJ (2000) Transgenic mouse models of human breast cancer. Oncogene 19: 6130–6137.

    Google Scholar 

  • Ip C (1996) Mammary tumorigenesis and chemoprevention studies in carcinogen-treated rats. J Mammary Gland Biol Neoplasia 1: 37–47.

    Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994) Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Google Scholar 

  • Jamerson MH, Johnson MD and Dickson RB (2000) Dual regulation of proliferation and apoptosis: c-myc in bitransgenic murine mammary tumor models. Oncogene 19: 1065–1071.

    Google Scholar 

  • Jue SF, Bradley RS, Rudnicki JA, Varmus HE and Brown AM (1992) The mouse Wnt-1 gene can act via a paracrine mechanism in transformation of mammary epithelial cells. Mol Cell Biol 12: 321–328.

    Google Scholar 

  • Kampert JB, Whittemore AS and Paffenbarger Jr RS (1988) Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128: 962–979.

    Google Scholar 

  • Kavanaugh CJ, Liu KL and Belury MA (1999) Effect of dietary con-jugated linoleic acid on phorbol ester induced PGE 2 production and hyperplasia in mouse epidermis. Nutr Cancer 33: 132–138.

    Google Scholar 

  • Klijn JG, Berns EM and Foekens JA (1993) Prognostic factors and response to therapy in breast cancer. Cancer Surv 18: 165–198.

    Google Scholar 

  • Kuerer HM, Buzdar AU and Singletary SE (2001) Biologic basis and evolving role of aromatase inhibitors in the management of invasive carcinoma of the breast. J Surg Oncol 77: 139–147.

    Google Scholar 

  • Kuperwasser C, Hurlbut GD, Kittrell FS, Dickinson ES, Laucirica R, Medina D et al. (2000) Development of spontaneous mam-mary tumors in BALB/c p53 heterozygous mice. A model for Li-Fraumeni syndrome. Am J Pathol 157: 2151–2159.

    Google Scholar 

  • Kwan H, Pecenka V, Tsukamoto A, Parslow TG, Guzman R, Lin TP et al. (1992) Transgenes expressing the Wnt-1 and int-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice. Mol Cell Biol 12: 147–154.

    Google Scholar 

  • Li B, Murphy KL, Laucirica R, Kittrell F, Medina D and Rosen JM (1998) A transgenic mouse model for mammary carcinogenesis. Oncogene 16: 997–1007.

    Google Scholar 

  • Li Y, Hively WP and Varmus HE (2000) Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 19: 1002–1009.

    Google Scholar 

  • Liao DJ, Natarajan G, Deming SL, Jamerson MH, Johnson M, Chepko G et al. (2000) Cell cycle basis for the onset and progres-sion of c-Myc-induced, TGFalpha-enhanced mouse mammary gland carcinogenesis. Oncogene 19: 1307–1317.

    Google Scholar 

  • Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M et al. (2000) Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343: 78–85.

    Google Scholar 

  • Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH et al. (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77: 640–644.

    Google Scholar 

  • Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E et al. (2001) Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J BiolChem 276: 18563–18569.

    Google Scholar 

  • Ludwig T, Fisher P, Murty V and Efstratiadis A (2001) Development of mammary adenocarcinomas by tissue-specific knockout of Brca2 in mice. Oncogene 20: 3937–3948.

    Google Scholar 

  • Ma ZQ, Chua SS, DeMayo FJ and Tsai SY (1999) Induction of mammary gland hyperplasia in transgenic mice over-expressing human Cdc25B. Oncogene 18: 4564–4576.

    Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni Jr JF, Nelson CE, Kim DH et al. (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238.

    Google Scholar 

  • Mangues R, Schwartz S, Seidman I and Pellicer A (1995) Promoter demethylation in MMTV/N-rasN transgenic mice required for transgene expression and tumorigenesis. Mol Carcinog 14: 94–102.

    Google Scholar 

  • Mangues R, Corral T, Kohl NE, Symmans WF, Lu S, Malumbres M et al. (1998) Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Cancer Res 58: 1253–1259.

    Google Scholar 

  • Maroulakou IG, Anver M, Garrett L and Green JE (1994) Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc Natl Acad Sci USA 91: 11236–11240.

    Google Scholar 

  • Maroulakou IG, Shibata MA, Jorcyk CL, Chen XX and Green JE (1997) Reduced p53 dosage associated with mammary.632 tumor metastases in C3(1)/TAG transgenic mice. Mol Carcinog 20: 168–174.

    Google Scholar 

  • Matsui Y, Halter SA, Holt JT, Hogan BL and Coffey RJ (1990) Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice. Cell 61: 1147–1155.

    Google Scholar 

  • McGuire WL, Horwitz KB, Pearson OH and Segaloff A (1977) Current status of estrogen and progesterone receptors in breast cancer. Cancer 39: 2934–2947.

    Google Scholar 

  • Moser AR, Luongo C, Gould KA, McNeley MK, Shoemaker AR and Dove WF (1995) ApcMin: a mouse model for intestinal and mammary tumorigenesis. Eur J Cancer 31A: 1061–1064.

    Google Scholar 

  • Moses HL, Yang EY and Pietenpol JA (1990) TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights. Cell 63: 245–247.

    Google Scholar 

  • Murphy KL, Kittrell FS, Gay JP, Jager R, Medina D and Rosen JM (1999) Bcl-2 expression delays mammary tumor development in dimethylbenz(a)anthracene-treated transgenic mice. Oncogene 18: 6597–6604.

    Google Scholar 

  • Nusse R (1992) The Wnt gene family in tumorigenesis and in normal development. J Steroid Biochem Mol Biol 43: 9–12.

    Google Scholar 

  • Omer CA and Kohl NE (1997) CA1A2X-competitive inhibitors of farnesyltransferase as anti-cancer agents. Trends Pharmacol Sci 18: 437–444.

    Google Scholar 

  • Omer CA, Chen Z, Diehl RE, Conner MW, Chen HY, Trumbauer ME et al. (2000) Mouse mammary tumor virus-Ki-rasB trans-genic mice develop mammary carcinomas that can be growth-inhibited by a farnesyl:protein transferase inhibitor. Cancer Res 60: 2680–2688.

    Google Scholar 

  • Ozer E, Sis B, Ozen E, Sakizli M, Canda T and Sarioglu S (2000) BRCA1, C-erbB-2, and H-ras gene expressions in young women with breast cancer. An immunohistochemical study. Appl Immunohistochem Mol Morphol 8: 12–18.

    Google Scholar 

  • Pazos P, Lanari C, Meiss R, Charreau EH and Pasqualini CD (1992) Mammary carcinogenesis induced by N-methyl-N-nitrosourea (MNU) and medroxyprogesterone acetate (MPA) in BALB/c mice. Breast Cancer Res Treat 20: 133–138.

    Google Scholar 

  • Pierce Jr DF, Gorska AE, Chytil A, Meise KS, Page DL, Coffey Jr RJ et al. (1995) Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci 92: 4254–4258.

    Google Scholar 

  • Pupa SM, Invernizzi AM, Forti S, Di Carlo E, Musiani P, Nanni P et al. (2001) Prevention of spontaneous neu-expressing mam-mary tumor development in mice transgenic for rat proto-neu by DNA vaccination. Gene Ther 8: 75–79.

    Google Scholar 

  • Radany EH, Hong K, Kesharvarzi S, Lander ES and Bishop JM (1997) Mouse mammary tumor virus/v-Ha-ras transgene-induced mammary tumors exhibit strain-specific allelic loss on mouse chromosome 4. Proc Natl Acad Sci 94: 8664–8669.

    Google Scholar 

  • Rao GN, Ney E and Herbert RA (1997) Influence of diet on mam-mary cancer in transgenic mice bearing an oncogene expressed in mammary tissue. Breast Cancer Res Treat 45: 149–158.

    Google Scholar 

  • Rao GN, Ney E and Herbert RA (1998) Effect of retinoid analogues on mammary cancer in transgenic mice with c-neu breast cancer oncogene. Breast Cancer Res Treat 48: 265–271.

    Google Scholar 

  • Rao GN, Ney E and Herbert RA (1999) Changes associated with delay of mammary cancer by retinoid analogues in transgenic mice bearing c-neu oncogene. Breast Cancer Res Treat 58: 241–254.

    Google Scholar 

  • Reilly RT, Gottlieb MB, Ercolini AM, Machiels JP, Kane CE, Okoye FI et al. (2000) HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res 60: 3569–3576.

    Google Scholar 

  • Rose-Hellekant TA and Sandgren EP (2000) Transforming growth factor alpha-and c-myc-induced mammary carcinogenesis in transgenic mice. Oncogene 19: 1092–1096.

    Google Scholar 

  • Rosenbaum Smith SM and Osborne MP (2000) Breast cancer chemoprevention. Am J Surg 180: 249–251.

    Google Scholar 

  • Rovero S, Amici A, Carlo ED, Bei R, Nanni P, Quaglino E et al. (2000) DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 165: 5133–5142.

    Google Scholar 

  • Sacco MG, Cato EM, Ceruti R, Soldati S, Indraccolo S, Caniatti M et al. (2001) Systemic gene therapy with anti-angiogenic factors inhibits spontaneous breast tumor growth and metastasis in MMTVneu transgenic mice. Gene Ther 8: 67–70.

    Google Scholar 

  • Sandgren EP, Schroeder JA, Qui TH, Palmiter RD, Brinster RL and Lee DC (1995) Inhibition of mammary gland involution is associated with transforming growth factor alpha but not c-myc-induced tumorigenesis in transgenic mice. Cancer Res 55: 3915–3927.

    Google Scholar 

  • Scharpira DV, Theodossiou C and Lyman GH (1999) The effects of NSAIDs on breast cancer prognostic factors. Oncol Rep 6: 433–435.

    Google Scholar 

  • Schoenenberger CA, Andres AC, Groner B, van d. V, LeMeur M and Gerlinger P (1988) Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J 7: 169–175.

    Google Scholar 

  • Schulze-Garg C, Lohler J, Gocht A and Deppert W (2000) A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene 19: 1028–1037.

    Google Scholar 

  • Senderowicz AM (2000) Small molecule modulators of cyclin-dependent kinases for cancer therapy. Oncogene 19: 6600–6606.

    Google Scholar 

  • Shah N, Antony T, Haddad S, Amenta P, Shirahata A, Thomas TJ et al. (1999) Antitumor effects of bis(ethyl)polyamine analogs on mammary tumor development in FVB/NTgN (MMTVneu) transgenic mice. Cancer Lett 146: 15–23.

    Google Scholar 

  • Sharpe CR, Collet JP, McNutt M, Belzile E, Boivin JF and Hanley JA (2000) Nested case-control study of the effects of non-steroidal anti-inflammatory drugs on breast cancer risk and stage. Br J Cancer 83: 112–120.

    Google Scholar 

  • Shepel LA and Gould MA (1999) The genetic components of susceptibility to breast cancer in the rat. Prog Exp Tumor Res 35: 158–169.

    Google Scholar 

  • Shi B, Yaremko B, Hajian G, Terracina G, Bishop WR, Liu M et al. (2001) The farnesyl protein transferase inhibitor SCH66336 syn-ergizes with taxanes in vitro and enhances their antitumor activity in vivo. Cancer Chemother Pharmacol 46: 387–393.

    Google Scholar 

  • Shibata MA, Jorcyk CL, Liu ML, Yoshidome K, Gold LG and Green JE (1998) The C3(1)/SV40 T antigen transgenic mouse model of prostate and mammary cancer. Toxicol Pathol 26: 177–182.

    Google Scholar 

  • Siegel PM, Hardy WR and Muller WJ (2000) Mammary gland neoplasia: insights from transgenic mouse models. Bioessays 22: 554–563.

    Google Scholar 

  • Sinn E, Muller W, Pattengale P, Tepler I, Wallace R and Leder P (1987) Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 49: 465–475.

    Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A and McGuire WL (1987) Human breast cancer: correlation of relapse and sur-vival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Google Scholar 

  • Smith K, Fox SB, Whitehouse R, Taylor M, Greenall M, Clarke J et al. (1999) Upregulation of basic fibroblast growth factor in breast carcinoma and its relationship to vascular density, oestrogen receptor, epidermal growth factor receptor and survival. Ann Oncol 10: 707–713.

    Google Scholar 

  • Soslow RA, Dannenberg AJ, Rush D, Woerner BM, Khan KN and Masferrer J (2000) COX-2 is expressed in human pulmonery, colonic and mammary tumors. Cancer 89: 2637–2645.

    Google Scholar 

  • Stamp G, Fantl V, Poulsom R, Jamieson S, Smith R, Peters G et al. (1992) Nonuniform expression of a mouse mammary tu-mor virus-driven int-2/Fgf-3 transgene in pregnancy-responsive breast tumors. Cell Growth Differ 3: 929–938.

    Google Scholar 

  • Strange R, Li F, Saurer S, Burkhardt A and Friis RR (1992) Apop-totic cell death and tissue remodelling during mouse mammary gland involution. Development 115: 49–58.

    Google Scholar 

  • Strauss L, Santti R, Saarinen N, Streng T, Joshi S and Makela S (1998) Dietary phytoestrogens and their role in hormonally dependent disease. Toxicol Lett 102-103: 349–354.

    Google Scholar 

  • Talts JF, Wirl G, Dictor M, Muller WJ and Fassler R (1999) Tenascin-C modulates tumor stroma and monocyte/macrophage recruitment but not tumor growth or metastasis in a mouse strain with spontaneous mammary cancer. J Cell Sci 112: 1855–1864.

    Google Scholar 

  • Tan TH, Wallis J and Levine AJ (1986) Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen-p53 protein complex. J Virol 59: 574–583.

    Google Scholar 

  • Tekmal RR, Ramachandra N, Gubba S, Durgam VR, Mantione J, Toda K et al. (1996) Overexpression of int-5/aromatase in mammary glands of transgenic mice results in the induction of hyperplasia and nuclear abnormalities. Cancer Res 56: 3180–3185.

    Google Scholar 

  • Tekmal RR, Kirma N, Gill K and Fowler K (1999) Aromatase over-expression and breast hyperplasia, an in vivo model-continued overexpression of aromatase is sufficient to maintain hyperplasia without circulating estrogens, and aromatase inhibitors abrogate these preneoplastic changes in mammary glands. Endocr Relat Cancer 2: 307–314.

    Google Scholar 

  • Tennant RW, Rao GN, Russfield A, Seilkop S and Braun AG (1993) Chemical effects in transgenic mice bearing onco-genes expressed in mammary tissue. Carcinogenesis 14: 29–35.

    Google Scholar 

  • Tornell J, Rymo L and Isaksson OG (1991) Induction of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice. Int J Cancer 49: 114–117.

    Google Scholar 

  • Uyttendaele H, Soriano JV, Montesano R and Kitajewski J (1998) Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol 196: 204–217.

    Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M et al. (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525–532.

    Google Scholar 

  • Wagner EF and Risau W (1994) Oncogenes in the study of endothelial cell growth and differentiation. Semin Cancer Biol 2: 137–145.

    Google Scholar 

  • Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A and Schmidt EV (1994) Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369: 669–671.

    Google Scholar 

  • Wigginton JM, Park JW, Gruys ME, Young HA, Jorcyk CL, Back TC et al. (2001) Complete regression of established spontaneous mammary carcinoma and the therapeutic prevention of genetically programmed neoplastic transition by IL-12/pulse IL-2: induction of local T cell infiltration, Fas/Fas ligand gene expression, and mammary epithelial apoptosis. J Immunol 166: 1156–1168.

    Google Scholar 

  • Wu K, Kim HT, Rodriquez JL, Munoz-Medellin D, Mohsin SK, Hilsenbeck SG et al. (2000) 9-cis-Retinoic acid suppresses mammary tumorigenesis in C3(1)-simian virus 40 T antigen-transgenic mice. Clin Cancer Res 6: 3696–3704.

    Google Scholar 

  • Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA et al. (2001) Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 28: 266–271.

    Google Scholar 

  • Yang Y, Dukhanina O, Tang B, Mamura M, Letterio JJ et al. (2002) Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side-effects. J Clin Invest 109: 1607–1615.

    Google Scholar 

  • Yao Y, Slosberg ED, Wang L, Hibshoosh H, Zhang YJ, Xing WQ et al. (1999) Increased susceptibility to carcinogen-induced mammary tumors in MMTV-Cdc25B transgenic mice. Oncogene 18: 5159–5166.

    Google Scholar 

  • Yokoyama Y, Green JE, Sukhatme VP and Ramakrishnan S (2000) Effect of endostatin on spontaneous tumorigenesis of mammary adenocarcinoma in a transgenic mouse model. Cancer Res 60: 4362–4365.

    Google Scholar 

  • Yoshidome K, Shibata MA, Couldrey C, Korach KS and Green JE (2000) Estrogen promotes mammary tumor development in C3(1)/SV40 large T-antigen transgenic mice: paradoxical loss of estrogen receptor alpha expression during tumor progression. Cancer Res 60: 6901–6910.

    Google Scholar 

  • Yu Q, Geng Y and Sicinski P (2001) Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021.

    Google Scholar 

  • Zeng WR, Watson P, Lin J, Jothy S, Lidereau R, Park M et al. (1999) Refined mapping of the region of loss of heterozygosity on the long arm of chromosome 7 in human breast cancer defines the location of a second tumor suppressor gene at 7q22 in the region of the CUTL1 gene. Oncogene 18: 2015–2021.

    Google Scholar 

  • Zheng L, Li S, Boyer TG and Lee WH (2000) Lessons learned from BRCA1 and BRCA2. Oncogene 19: 6159–6175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.E. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavanaugh, C., Desai, K., Calvo, A. et al. Pre-Clinical Applications of Transgenic Mouse Mammary Cancer Models. Transgenic Res 11, 617–633 (2002). https://doi.org/10.1023/A:1021159705363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021159705363

Navigation