Skip to main content
Log in

Motor Coordination, Exploration, and Spatial Learning in a Natural Mouse Mutation (nervous) with Purkinje Cell Degeneration

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

The nervous mouse mutation causes a relatively selective degeneration of Purkinje cells in the cerebellar cortex. The mutants were compared to age-matched controls of the same background strain in tests of motor activity and coordination, spontaneous alternation, and spatial learning in the Morris water maze. As expected from their ataxia, the nervous mutants were impaired in stationary beam, coat-hanger, and rotorod tests of motor coordination. The nervous mutants were also impaired in the submerged but not in the visible platform condition of the Morris water maze, attributable to a spatial deficit, and displayed a higher level of motor activity in an automated chamber. The deficit in spontaneous alternation rates seen in nervous mutants is accountable by reduced motivation, disinhibition, or spatial disorientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berrebi, A. S., and Mugnaini, E. (1988). Effects of the murine mutation “nervous” on neurons in cerebellum and dorsal cochlear nucleus. J. Neurocytol. 17:465-484.

    Google Scholar 

  • Bliss, T. V., and Errington, M. L. (1977). “Reeler” mutant mice fail to show spontaneous alternation. Brain Res. 124:168-170.

    Google Scholar 

  • Botez-Marquard, T., and Botez, M. I. (1993). Cognitive behavior in heredodegenerative ataxias. Eur. Neurol. 33:351-357.

    Google Scholar 

  • Caston, J., Jones, N., and Stelz, T. (1995). Role of preoperative and postoperative sensorimotor training on restoration of the equilibrium behavior in adult mice following cerebellectomy. Neurobiol. Learn. Mem. 64:195-202.

    Google Scholar 

  • Caston, J., Vasseur, F., Delhaye-Bouchaud, N., and Mariani, J. (1997). Delayed spontaneous alternation in intact and cerebellectomized control and Lurcher mutant mice: Differential role of cerebellar cortex and deep cerebellar nuclei. Behav. Neurosci. 111:214-218.

    Google Scholar 

  • de Bruin, J. P. C., Moita, M. P., de Brabander, H. M., and Joosten, R. N. J. M. A. (2001). Place and response learning in a Morris water maze: Differential effects of fimbria fornix and medial prefrontal cortex. Neurobiol. Learn. Mem. 75:164-178.

    Google Scholar 

  • Dember, W. N. (1958). Stimulus alternation in peripherally blinded rats. Can. J. Psychol. 12:219-221.

    Google Scholar 

  • Douglas, R. J., Clark, G. M., Erway, L. C., Hubbard, D. G., and Wright, C. G. (1979). Effects of genetic vestibular defects on behavior related to spatial orientation and emotionality. J. Comp. Physiol. Psychol. 93:467-480.

    Google Scholar 

  • Fehrenbach, R. A., Wallesch, C.-W., and Claus, D. (1984). Neuropsychologic findings in Friedreich's ataxia. Arch. Neurol. 41:306-308.

    Google Scholar 

  • Fortier, P., Smith, A. M., and Rossignol, S. (1987). Locomotor deficits in the cerebellar mutant mouse, Lurcher. Exp. Brain Res. 66:271-286.

    Google Scholar 

  • Goodlett, C. R., Hamre, K. M., and West, J. R. (1992). Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav. Brain Res. 47:129-141.

    Google Scholar 

  • Isseroff, A. (1979). Limited recovery of spontaneous alternation after extensive hippocampal damage: Evidence for a memory impairment. Exp. Neurol. 64:284-294.

    Google Scholar 

  • Joyal, C. C., Strazielle, C., and Lalonde, R. (2001). Effects of dentate nucleus lesions on spatial and postural sensorimotor learning in rats. Behav. Brain Res. 122:131-137.

    Google Scholar 

  • Joyal, C. C., Meyer, C., Jacquart, G., Mahler, P., Caston, J., and Lalonde, R. (1996). Effects of midline and lateral cerebellar lesions on motor coordination and spatial orientation. Brain Res. 739:1-11.

    Google Scholar 

  • Lalonde, R. (1987). Exploration and spatial learning in staggerer mutant mice. J. Neurogenet. 4:285-292.

    Google Scholar 

  • Lalonde, R. (2002). The neurobiological basis of spontaneous alternation. Neurosci. Biobehav. Rev. 26:91-104.

    Google Scholar 

  • Lalonde, R., and Botez, M. I. (1985a). Exploration and habituation in nervous mutant mice. Behav. Brain Res. 17:83-86.

    Google Scholar 

  • Lalonde, R., and Botez, M. I. (1985b. Exploration of a hole-board matrix in nervous mutant mice. Brain Res. 343:356-359.

    Google Scholar 

  • Lalonde, R., and Strazielle, C. (2001). Motor coordination and regional brain metabolism in spontaneous mouse mutations with cerebellar atrophy. Behav. Brain Res. 125:103-108.

    Google Scholar 

  • Lalonde, R., Botez, M. I., and Boivin, D. (1986). Spontaneous alternation and habituation in a t-maze in nervous mutant mice. Behav. Neurosci. 100:350-352.

    Google Scholar 

  • Landis, S. C. (1973). Ultrastructural changes in the mitochondria of cerebellar Purkinje cells of nervous mutant mice. J. Cell Biol. 57:782-797.

    Google Scholar 

  • LaVail, M. M., White, M. P., Gorrin, G. M., Yasumura, D., Porrello, K. V., and Mullen, R. J. (1993). Retinal degeneration in the nervous mutant mouse: I. Light microscopic cytopathology and changes in the interphotoreceptor matrix. J. Comp. Neurol. 333:168-181.

    Google Scholar 

  • Le Marec, N., Dahhaoui, M., Stelz, T., Bakalian, A., Delhaye-Bouchaud, N., Caston, J., and Mariani, J. (1997). Effect of cerebellar granule cell depletion on spatial learning and memory and in an avoidance conditioning task: Studies in postnatally Xirradiated rats. Dev. Brain Res. 99:20-28.

    Google Scholar 

  • Morris, R. G. M., Garrud, P., Rawlins, J. N. P., and O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature 292:681-683.

    Google Scholar 

  • Mullen, R. J., and Lavail, M. M. (1975). Two new types of retinal degeneration in cerebellar mutant mice. Nature 258:528-530.

    Google Scholar 

  • Newman, P. P., and Reza, H. (1979). Functional relationships between the hippocampus and the cerebellum: An electrophysiological study in the cat. J. Physiol. (London) 287:405-426.

    Google Scholar 

  • Pelligrino, L. J., and Altman, J. (1979). Effects of differential interference with postnatal cerebellar neurogenesis on motor performance, activity level, and maze learning of rats: A developmental study. J. Comp. Physiol. Psychol. 93:1-33.

    Google Scholar 

  • Petrosini, L., Molinari, M., and Dell'Anna, M. E. (1996). Cerebellar contribution to spatial event processing: Morris water maze and T-maze. Eur. J. Neurosci. 8:1882-1896.

    Google Scholar 

  • Price, J. L. (1995). Thalamus. In: Paxinos, G. (Ed.) The Rat Nervous System (2nd Ed), Academic Press, New York, pp. 629-648.

    Google Scholar 

  • Rubertone, J. A., Mehler, W. R., and Voogd, J. (1995). The vestibular nuclear complex. In: Paxinos, G. (Ed.), The Rat Nervous System (2nd Ed), Academic Press, New York, pp. 773-796.

    Google Scholar 

  • Saint-Cyr, J. A., and Woodward, D. J. (1982). Activation of mossy and climbing fiber pathways to the cerebellar cortex by stimulation of the fornix in the rat. Exp. Brain Res. 45:333-348.

    Google Scholar 

  • Savage, L. M., Sweet, A. J., Castillo, R., and Langlais, P. J. (1997). The effects of lesions to thalamic lateral internal medullary lamina and posterior nuclei on learning, memory and habituation in the rat. Behav. Brain Res. 82:133-147.

    Google Scholar 

  • Schmahmann, J. D., and Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain 121:561-579.

    Google Scholar 

  • Sidman, R. L., and Green, M. C. (1970). “Nervous,” a new mutant mouse with cerebellar disease. In: Sabourdy, M. (Ed.), Les mutants pathologiques chez l'animal. CNRS, Paris, pp. 69-79.

    Google Scholar 

  • Sotelo, C., and Triller, A. (1979). Fate of presynaptic afferents of Purkinje cells in adult nervous mutant mice: A model to study presynaptic stabilization. Brain Res. 175:11-36.

    Google Scholar 

  • Stubley-Weatherly, L., Harding, J. W., and Wright, J. W. (1996). Effects of discrete kainic acid-induced hippocampal lesions on spatial and contextual learning and memory in rats. Brain Res. 716:29-38.

    Google Scholar 

  • Wassef, M., Sotelo, C., Cholley, B., Brehier, A., and Thomasset, M. (1987). Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev. Biol. 124:379-389.

    Google Scholar 

  • Whishaw, I. Q., Mittleman, G., Bunch, S. T., and Dunnett, S. B. (1987). Impairments in the acquisition, retention and selection of spatial navigational strategies after medial caudate-putamen lesions in rats. Behav. Brain Res. 24:125-138.

    Google Scholar 

  • White, M. P., Gorrin, G. M., Mullen, R. J., and LaVail, M. M. (1993). Retinal degeneration in the nervous mutant mouse: II. Electron microscopic analysis. J. Comp. Neurol. 333:182-198.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalonde, R., Strazielle, C. Motor Coordination, Exploration, and Spatial Learning in a Natural Mouse Mutation (nervous) with Purkinje Cell Degeneration. Behav Genet 33, 59–66 (2003). https://doi.org/10.1023/A:1021003600900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021003600900

Navigation