Skip to main content
Log in

Synthesis and characterization of carbonate hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Substituted apatite ceramics are of clinical interest as they offer the potential to improve the bioactive properties of implants. Carbonate hydroxyapatite (CHA) has been synthesized by an aqueous precipitation method and precipitates with two different levels of carbonate, processed as powders. Sintering experiments were performed to establish the influence of carbonate in significantly reducing the temperature required to prepare high-density ceramics when compared with stoichiometric hydroxyapatite (HA). High-temperature X-ray diffraction was used to characterize the phase stability of the apatites on sintering. Increasing carbonate content was shown to reduce the temperature at which decomposition occurred, to phases of CaO and β-TCP. Mechanical testing, performed using biaxial flexure, showed that the CHA specimens had strengths similar to stoichiometric HA. © 1998 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. de Groot, C. P. A. T. Klein and A. A. Driessen, J. Head and Neck Pathol. 4 (1985) 90.

    Google Scholar 

  2. H. Aoki, in “Science and medical applications of hydroxyapatite” (Takayama Press, Tokyo, 1991).

    Google Scholar 

  3. F. C. M. Driessens, in “Bioceramics of calcium phosphates”, edited by K. de Groot (CRC Press, Boca Raton, FL, 1983).

    Google Scholar 

  4. K. A. Hing, L. Di-silvio, I. R. Gibson, C. Ohtsuki, L. Jha, S. M. Best and W. Bonfield, Bioceramics 10 (1997) 19.

    Google Scholar 

  5. L. G. Ellies, J. M. Carter, R. J. Natiella, J. D. B. Featherstone and D. G. A. Nelson, J. Biomed.Mater. Res. 22 (1998) 137.

    Google Scholar 

  6. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay and R. H. Doremus, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  7. D. G. A. Nelson and J. D. B. Featherstone, Calc. Tiss. Int. 34 (1982) S69.

    Google Scholar 

  8. PDF card no. 9–432 (ICDD, Newton Square, PA, USA).

  9. L. G. Ellies, D. G. A. Nelson and J. D. B. Featherstone, J. Biomed. Mater. Res. 22 (1988) 541.

    Google Scholar 

  10. J. Barralet, PhD thesis, University of London (1995).

  11. ISO 13356, “Implants for surgery–Ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP) p. 5.

  12. G. de With, H. J. A. Van Dijk, N. Hattu and K. Prijs, J. Mater. Sci. 16 (1981) 1592.

    Google Scholar 

  13. S. Shimoda, T. Aoba, E. C. Moreno and Y. Miake, J. Dent. Res. 69 (1990) 1731.

    Google Scholar 

  14. Y. Doi, T. Koda, N. Wakamatsu, T. Goto, H. Kamemizu, Y. Moriwaki, M. Adachi and Y. Suwa, ibid. 72 (1993) 1279.

    Google Scholar 

  15. A. J. Ruys, M. Wei, C. C. Sorrell, M. R. Dickson, A. Brandwood and B. K. Milthorpe, Biomaterials 16 (1995) 409.

    Google Scholar 

  16. A. Royer, J. C. Viguie, M. Heughebaert and J. C. Heughebaert, J. Mater. Sci. Mater. Med. 4 (1993) 76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merry, J.C., Gibson, I.R., Best, S.M. et al. Synthesis and characterization of carbonate hydroxyapatite. Journal of Materials Science: Materials in Medicine 9, 779–783 (1998). https://doi.org/10.1023/A:1008975507498

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008975507498

Keywords

Navigation