Skip to main content
Log in

A novel approach for studying angiogenesis: A human skin equivalent with a capillary-like network

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Angiogenesis results from an ordered set of events that can be modulated in vivo by a variety of angiogenesis-enhancing or inhibiting agents. We review in vitro angiogenesis models and the agents that enhance or inhibit angiogenesis. We also discuss a new in vitro angiogenesis model created within a skin equivalent. Briefly, endothelial cells were combined with the cutaneous cells of a standard skin equivalent and cultured in a chitosan cross-linked collagen-glycosaminoglycan scaffold of this endothelialized skin. This model enables the formation of capillary-like structures in a coculture environment containing newly synthesized extracellular matrix by fibroblasts and keratinocytes. Several morphological characteristics associated with the microvasculature in vivo were observed in the endothelialized skin equivalent such as histotypic organization of tubular structures, basement membrane deposition, and intercellular junction formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angiolillo AL, Kanegane H, Sgadari C, Reaman GH, Tosato G. Interleukin-15 promotes angiogenesis in vivo. Biochem Biophys Res Commun. 1997;233:231–7.

    Article  PubMed  CAS  Google Scholar 

  • Arthur WT, Vernon RB, Sage EH, Reed MJ. Growth factors reverse the impaired sprouting of microvessels from aged mice. Microvasc Res. 1998;55:260–70.

    Article  PubMed  CAS  Google Scholar 

  • Ballaun C, Weninger W, Uthman A, Weich H, Tschachler E. Human keratinocytes express the three major splice forms of vascular endothelial growth factor. J Invest Dermatol. 1995;104:7–10.

    Article  PubMed  CAS  Google Scholar 

  • Barillari G, Albonici L, Franzese O et al. The basic residues of placenta growth factor type 2 retrieve sequestered angiogenic factors into a soluble form: implications for tumor angiogenesis. Am J Pathol. 1998;152:1161–66.

    PubMed  CAS  Google Scholar 

  • Benelli U, Bocci G, Danesi R et al. The heparan sulfate suleparoide inhibits rat corneal angiogenesis and in vitro neovascularization. Exp Eye Res. 1998;67:133–42.

    Article  PubMed  CAS  Google Scholar 

  • Black AF, Berthod F, L'Heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J. 1998;12:1331–40.

    PubMed  CAS  Google Scholar 

  • Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin αvβ3 for angiogenesis. Science. 1994;264:569–71.

    PubMed  CAS  Google Scholar 

  • Cao Y, O'Reilly MS, Marshall B, Flynn E, Ji RW, Folkman J. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest. 1998;101:1055–63.

    PubMed  CAS  Google Scholar 

  • Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J. Fibrin II induces endothelial cell capillary tube formation. J Cell Biol. 1995;130:207–15.

    Article  PubMed  CAS  Google Scholar 

  • Cheresh DA. Death to a blood vessel, death to a tumor. Nature Med. 1998;4:395–6.

    Article  PubMed  CAS  Google Scholar 

  • Ching LM, Browne WL, Tchernegovski R, Gregory T, Baguley BC, Palmer BD. Interaction of thalidomide, phthalimide analogues of thalidomide and pentoxifylline with the antitumor agent 5,6-dimethylxanthenone-4-acetic acid: concomitant reduction of serum tumor necrosis factor-alpha and enhancement of anti-tumor activity. Br J Cancer. 1998;78:336–43.

    PubMed  CAS  Google Scholar 

  • Choudhuri R, Zhang HT, Donnini S, Ziche M, Bicknell R. An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis. Cancer Res. 1997;57:1814–19.

    PubMed  CAS  Google Scholar 

  • Clapp C, Martial JA, Guzman RC, Rentier-Delure F, Weiner RI. The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology. 1993;133:1292–9.

    Article  PubMed  CAS  Google Scholar 

  • Cockerill GW, Gamble JR, Vadas MA. Angiogenesis: models and modulators. Int Rev Cytol. 1995;159:113–60.

    PubMed  CAS  Google Scholar 

  • Cornelius LA, Nehring LC, Roby JD, Parks WC, Welgus HG. Human dermal microvascular endothelial cells produce matrix metalloproteinases in response to angiogenic factors and migration. J Invest Dermatol. 1995;105:170–6.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin CM, Salhany KE, Wysocka M et al. Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest. 1998;101:1441–52.

    PubMed  CAS  Google Scholar 

  • Damour O, Augustin C, Black AF. Applications of reconstructed skin models in pharmaco-toxicological trials. Med Biol Eng Comput. 1998;6:825–32.

    Google Scholar 

  • Deed R, Rooney P, Kumar P et al. Early-response gene signaling is induced by angiogenic oligosaccharides of hyaluronan in endothelial cells. Inhibition by non-angiogenic, high molecular weight hyaluronan. Int J Cancer. 1997;10:251–6.

    Article  Google Scholar 

  • Dinney CP, Bielenbreg DR, Perrotte P et al. Inhibition of basic fibroblast growth factor expression, angiogenesis, and growth of human bladder carcinoma in mice by systemic interferon-alpha administration. Cancer Res. 1998;58:808–14.

    PubMed  CAS  Google Scholar 

  • Dobryszycka W. Biological functions of haptoglobin — new pieces to an old puzzle. Eur J Clin Chem Clin Biochem. 1997;35:647–54.

    PubMed  CAS  Google Scholar 

  • Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235:442–7.

    PubMed  CAS  Google Scholar 

  • Folkman J, Weisz PB, Joullie MM, Li WW, Ewing WR. Control of angiogenesis with synthetic heparin substitutes. Science. 1989a;243:1490–3.

    PubMed  CAS  Google Scholar 

  • Folkman J, Watson K, Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989b;339:58–62.

    Article  PubMed  CAS  Google Scholar 

  • Frank S, Hübner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. J Biol Chem. 1995;270:12607–13.

    Article  PubMed  CAS  Google Scholar 

  • Fukushi J, Morisaki T, Shono T et al. Novel biological functions of interleukin 4: formation of tube-like structures by vascular endothelial cells in vitro and angiogenesis in vivo. Biochem Biophys Res Commun. 1998;250:444–8.

    Article  PubMed  CAS  Google Scholar 

  • Good DJ, Polverini PJ, Rastinejad F et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA. 1990;87:6624–8.

    Article  PubMed  CAS  Google Scholar 

  • Herbert JM, Cottineau M, Driot F, Pereillo JM, Maffrand JP. Activity of pentosan polysulfate and derived compounds on vascular endothelial cell proliferation and migration induced by acidic and basic FGF in vitro. Biochem Pharmacol. 1988;37:4281–8.

    Article  PubMed  CAS  Google Scholar 

  • Hu GF. Neomycin inhibits angiogenin-induced angiogenesis. Proc Natl Acad Sci USA. 1998;95:9791–5.

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE, Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol. 1989a;109:317–30.

    Article  PubMed  CAS  Google Scholar 

  • Ingber DE, Folkman J. How does extracellular matrix control capillary morphogenesis? Cell. 1989b;58:803–5.

    Article  PubMed  CAS  Google Scholar 

  • Ingber D, Fujita T, Kishimoto S et al. Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature. 1990;348:555–7.

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Abe T, Tomita M et al. Anti-angiogenic activity of arachidonic acid metabolism inhibitors in angiogenesis model systems involving human microvascular endothelial cells and neovascularization in mice. Int J Cancer. 1993;55:660–6.

    PubMed  CAS  Google Scholar 

  • Jackson JR, Bolognese B, Hillegass L et al. Pharmacological effects of SB220025, a selective inhibitor of P38 mitogen-activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther. 1998;284:687–92.

    PubMed  CAS  Google Scholar 

  • Kohn EC, Alessandro R, Spoonster J, Wersto RP, Liotta LA. Angiogenesis: role of calcium-mediated signal transduction. Proc Natl Acad Sci USA. 1995;92(5):1307–11.

    Article  PubMed  CAS  Google Scholar 

  • Kruse FE, Joussen AM, Rohrschneider K, Becker MD, Volker HE. Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor. Graefes Arch Clin Exp Ophthalmol. 1998;235:461–6.

    Article  Google Scholar 

  • Kubota Y, Kleinman HK, Martin GR, Lawley T. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells in capillary-like structure. J Cell Biol. 1988;107:1589–98.

    Article  PubMed  CAS  Google Scholar 

  • Majewski S, Skopinska M, Marczak M, Szmurlo A, Bollag W, Jablonska S. Vitamin D3 is a potent inhibitor of tumor cell-induced angiogenesis. J Invest Dermatol Symp Proc. 1996;1:97–101.

    CAS  Google Scholar 

  • Malinda KM, Sidhu GS, Banaudha KK et al. Thymosin alpha 1 stimulates endothelial cell migration, angiogenesis, and wound healing. J Immunol. 1998;160:1001–6.

    PubMed  CAS  Google Scholar 

  • Mallery SR, Lantry LE, Toms MC et al. Human microvascular endothelial cell-extracellular matrix interaction in cellular growth state determination. Cell Tissue Res. 1994;279:37–45.

    Article  Google Scholar 

  • Manetti F, Capello V, Botta M et al. Synthesis and binding mode of heterocyclic analogues of suramin inhibiting the human basic fibroblast growth factor. Bioorg Med.Chem. 1998;6:947–58.

    Article  PubMed  CAS  Google Scholar 

  • Meredith JE, Fazeli B Jr, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell. 1993;4:953–61.

    PubMed  CAS  Google Scholar 

  • Michel M, Germain L, Belanger PM, Auger FA. Functional evaluation of anchored skin equivalent cultured in vitro: percutaneous absorption studies and lipid analysis. Pharm Res. 1995;12:455–8.

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam A, Zhang HT, Fan TP et al. Thymidine phosphorylase is angiogenic and promotes tumor growth. Proc Natl Acad Sci USA. 1995;82:998–1002.

    Article  Google Scholar 

  • Mohammadi M, Froum S, Hamby JM et al. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J. 1998;17:5896–904.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Orci L. Tumor-promoting phorbol ester induce angiogenesis in vitro. Cell. 1985;42:469–77.

    Article  PubMed  CAS  Google Scholar 

  • Montesano R, Kumar S, Orci L, Pepper MS. Synergistic affect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab Invest. 1996;75:249–62.

    PubMed  CAS  Google Scholar 

  • Montesano R, Soriano JV, Pepper M, Orci L. Induction of epithelial branching tubulogenesis in vitro. J Cell Physiol. 1997;173:152–61.

    Article  PubMed  CAS  Google Scholar 

  • Nicosia RF, Lin YJ, Hazelton D, Qian X. Endogenous regulation of angiogenesis in the rat aorta model. Role of vascular endothelial growth factor. Am J Pathol. 1997;151:1379–86.

    PubMed  CAS  Google Scholar 

  • Okada N, Fushimi M, Nagata Y et al. Evaluation of angiogenic inhibitors with an in vivo quantitative angiogenesis method using agarose microencapsulation and mouse hemoglobin enzyme-linked immunosorbent assay. Jpn J Cancer Res. 1996;87:952–7.

    PubMed  CAS  Google Scholar 

  • Ono M, Kawahara N, Goto D et al. Inhibition of tumor growth and neovascularization by an anti gastric ulcer agent. Cancer Res. 1996;56:1512.

    PubMed  CAS  Google Scholar 

  • O'Reilly MS, Boehm T, Shing Y et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88:277–85.

    Article  PubMed  Google Scholar 

  • Pepper MS, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun. 1992;189:824–31.

    Article  PubMed  CAS  Google Scholar 

  • Pluda JM, Parkinson DR. Clinical implication of tumor-associated neovascularization and current antiangiogenic strategies of the treatment of malignancies of pancreas. Cancer. 1996;78:680–7.

    PubMed  CAS  Google Scholar 

  • Polverini PJ. Cellular adhesion molecules. Newly identified mediators of angiogenesis. Am J Pathol. 1996;148:1023–9.

    PubMed  CAS  Google Scholar 

  • Re F, Zanetti A, Siroti M et al. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol. 1994;127:537–46.

    Article  PubMed  CAS  Google Scholar 

  • Regnier M, Staquet MJ, Schmitt D, Schmidt R. Integration of Langerhans cells into a pigmented reconstructed human epidermis. J Invest Dermatol. 1997;109:510–12.

    Article  PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA. 1986;83:4167–71.

    Article  PubMed  CAS  Google Scholar 

  • Ruegg C, Yilmaz A, Bieler G, Bamat J, Chaubert P, Lejeune FJ. Evidence for the involvement of endothelial cell integrin αvβ3 in the disruption of the tumor vasculature induced by TNF and INFγ. Nature Med. 1998;4:408–14.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Ishibashi T, Kimura H et al. Effect of telogalan sodium on angiogenesis in vitro by choroidal endothelial cells. Invest Ophthalmol. 1995;36:1076–83.

    CAS  Google Scholar 

  • Sakkoula E, Pipili-Synetos E, Maragoudakis ME. Involvement of nitric oxide in the inhibition of angiogenesis by interleukin 2. Br J Pharmacol. 1997;122:793–5.

    Article  PubMed  CAS  Google Scholar 

  • Sasisekharan R, Moses MA, Nugent MA, Cooney CL, Langer R. Heparinase inhibits neovascularization. Proc Natl Acad Sci USA. 1994;9:1524–8.

    Article  Google Scholar 

  • Schreiber AB, Winkler ME, Derynck R. Transforming growth factor alpha: a more potent angiogenic factor than epidermal growth factor. Science. 1986;232:1250–3.

    PubMed  CAS  Google Scholar 

  • Seghezzi G, Patel S, Ren CJ et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol. 1998;141:1659–73.

    Article  PubMed  CAS  Google Scholar 

  • Strydom DJ. The angiogenins. Cell Mol Life Sci. 1998;54:811–24.

    Article  PubMed  CAS  Google Scholar 

  • Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C. Macrophage-derived angiogenesis factors. Pharmacol Ther. 1991;51:195–216.

    Article  PubMed  CAS  Google Scholar 

  • Suri C, Jones PF, Patan S et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87:1171–80.

    Article  PubMed  CAS  Google Scholar 

  • Swerlick RA, Lawley TJ. Role of microvascular endothelial cells in inflammation. J Invest Dermatol. 1993;100:111–15S.

    Article  Google Scholar 

  • Tanaka T, Yoshinobu M, Wen P, Kufe DW, Fine HA. Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth. Nature Med. 1997;3:437–42.

    Article  PubMed  CAS  Google Scholar 

  • Van Belle E, Witzenbichler B, Chen D et al. Potential angiogenic effect of scatter factor/hepatocyte growth factor: the case for paracrine amplification of angiogenesis. Circulation. 1998;97:381–90.

    PubMed  CAS  Google Scholar 

  • Vernon RB, Sage EH. Between molecules and morphology. Extracellular matrix and creation of vascular form. Am J Pathol. 1995;147:873–83.

    PubMed  CAS  Google Scholar 

  • Villaschi S, Nicosia RF. Paracrine interactions between fibroblasts and endothelial cells in a serum-free coculture model: modulation of angiogenesis and collagen gel contraction. Lab Invest. 1994;71:291–9.

    PubMed  CAS  Google Scholar 

  • Voest EE, Kenyon BM, O'Reilly MS, Truitt G, D'Amato RJ, Folkman J. Inhibition of angiogenesis in vivo by interleukin-12. J. Natl Cancer Inst. 1995;87:581–6.

    PubMed  CAS  Google Scholar 

  • Volpert OV, Ward WF, Lingen MW et al. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest. 1996;98:671–9.

    Article  PubMed  CAS  Google Scholar 

  • Wamil BD, Thurman GB, Sundell HW et al. Soluble E-selectin in cancer patients as a marker of the therapeutic efficacy of CM101, a tumor-inhibiting anti-neovascularization agent, evaluated in phase I clinical trial. J Cancer Res Clin Oncol. 1997;123:173–9.

    PubMed  CAS  Google Scholar 

  • Weiss JB, McLaughlin B. Endothelial cell stimulating angiogenesis factor. Int J Biochem Cell Biol. 1998;30:423–7.

    Article  PubMed  CAS  Google Scholar 

  • Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors. Invest New Drugs 1997;15:61–75.

    Article  PubMed  CAS  Google Scholar 

  • Woltering EA, Watson JC, Alperin-Lea RC et al. Somatostatin analogs: angiogenesis inhibitors with novel mechanisms of action. Invest New Drugs. 1997;15:77–86.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Ono M, Shono T et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol. 1997;17:4015–23.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, A., Hudon, V., Damour, O. et al. A novel approach for studying angiogenesis: A human skin equivalent with a capillary-like network. Cell Biol Toxicol 15, 81–90 (1999). https://doi.org/10.1023/A:1007541713398

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007541713398

Navigation