Skip to main content
Log in

Phospholipase A2-mediated hydrolysis of cardiac phospholipids: The use of molecular and transgenic techniques

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Under pathophysiological conditions, like myocardial ischemia and reperfusion, cardiac phospholipid homeostasis is severely disturbed, resulting in a net degradation of phospholipids and the accumulation of degradation products, such as lysophospholipids and (non-esterified) fatty acids. The derangements in phospholipid metabolism are thought to be involved in the sequence of events leading to irreversible myocardial injury. The net degradation of phospholipids as observed during myocardial ischemia may result from increased hydrolysis and/or reduced resynthesis, while during reperfusion hydrolysis is likely to prevail in this net degradation. Several studies indicate that the activation of phospholipases A2 plays an important role in the hydrolysis of phospholipids. In this review current knowledge regarding the potential role of the different types of phospholipases A2 in ischemia and reperfusion-induced damage is being evaluated. Furthermore, it is indicated how recent advances in molecular biological techniques could be helpful in determining whether disturbances in phospholipid metabolism indeed play a crucial role in the transition from reversible to irreversible myocardial ischemia and reperfusion-induced injury, the knowledge of which could be of great therapeutic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS: Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 72: 881–940, 1992

    Google Scholar 

  2. Karmazyn M, Dhalla NS: Physiological and pathophysiological aspects of cardiac prostaglandines. Can J Physiol Pharmacol 61: 912–921, 1989

    Google Scholar 

  3. Engels W, Van Bilsen M, De Groot MJM, Reneman RS, Van der Vusse GJ: Ischemia and reperfusion induced formation of eicosanoids in isolated rat hearts. Am J Physiol 258: H1865–H1871, 1990

    Google Scholar 

  4. Van der Vusse GJ, Van Bilsen M, Sonderkamp T, Reneman RS: Hydrolysis of phospholipids and cellular integrity. In: HM Piper (ed). Pathophysiology of Severe Ischemic Myocardial Injury.Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990, pp 167–193.

    Google Scholar 

  5. Van Bilsen M, Van der Vusse GJ, Willemsen PHM, Coumans WA, Roemen ThHM, Reneman RS: Lipid alterations in isolated working rat hearts during ischemia and reperfusion: Its relation to myocardial damage. Circ Res 64: 304–314, 1989

    Google Scholar 

  6. Van Bilsen M, Van der Vusse GJ: Phospholipase A2-dependent signalling in the heart. Cardiovasc Res 30: 518–529, 1995

    Google Scholar 

  7. Hatch GM, Choy KO, Choy PC: Regulation of phosphatidylcholine metabolism in mammalian hearts. Biochem Cell Biol 67: 67–77, 1989

    Google Scholar 

  8. Post JA, Langer GA, Op den Kamp JAF, Verkleij AJ: Phospholipid asymmetry in cardiac sarcolemma. Analysis of intact cells and gas dissected membranes. Biochim Biophys Acta 943: 256–266, 1988

    Google Scholar 

  9. Hazen SL, Ford DA, Gross W: Activation of a membrane associated phospholipase A2 during rabbit myocardial ischemia which is highly selective for plasmalogen substrate. J Biol Chem 266: 5629–5633, 1991

    Google Scholar 

  10. Arthur G, Mock T, Zaborniak C, Choy PC: Plasmalogenase in hamster heart. Biochim Biophys Acta 833: 189–195, 1985

    Google Scholar 

  11. Irvine RI: How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204: 204–209, 1982

    Google Scholar 

  12. Terminé E, Leonardi J, Lafont H, Nalbone G: Intracellular phospholipase activity in rat heart: Comparison between endogenous and exogenous substrates. Biochimie 69: 245–248, 1987

    Google Scholar 

  13. Miyazaki Y, Gross RW, Sobel BE: Biochemical and subcellular distribution of arachidonic acid in rat myocardium. Am J Physiol 253: C846–C853, 1987

    Google Scholar 

  14. Miyazaki Y, Gross W, Sobel BE, Saffitz JE: Selective turnover of sarcolemmal phospholipids with lethal cardiac myocyte injury. Am J Physiol 259: C325–C331, 1990

    Google Scholar 

  15. De Windt LJ, Van Bilsen M, Van der Vusse GJ, Reneman RS: Cloning and cellular distribution of a group II phospholipase A2 expressed in the heart. J Mol Cell Cardiol 28, 1996 (abstr)

  16. Garcia R, Martines R, Rabago M, Hernandez-Perez O, Reyes A, Rosado A: Subcellular distribution of phospholipase A2 and ATPases during capacitation and acrosome reaction in guinea pig spermatozoa. Arch Androl 26: 93–105, 1991

    Google Scholar 

  17. Levrat C, Louisot P: Dual localization of the mitochondrial phospholipase A2: Outer membrane contact sites and inner membrane. Biochem Biophys Res Commun 183: 719–724, 1992

    Google Scholar 

  18. Aarsman AJ, Leunissen-Bijvelt J, van den Koedijk CD, Neys FW, Verkleij AJ, Van den Bosch H: Phospholipase A2 activity in platelets. Immunopurification and localization of the enzyme in rat platelets. Lipids Mediat 1: 49–61, 1989

    Google Scholar 

  19. Horigome K, Hayakawa M, Inoue K, Nojima S: Selective release of phospholipase A2 and lysophosphatidylserine-specific lysophospholipase from rat platelets. J Biochem 101: 625–631, 1987

    Google Scholar 

  20. Kriegsmann J, Muller WD, Richter W, Wunderlich J, Wallukat G: Demonstration of membrane-associated phospholipase A2 in cultivated heart muscle cells by immunogold-technique in surface replicas. Acta Histochem 95: 61–66, 1993

    Google Scholar 

  21. Langer GA: Myocardial calcium compartimentation. Trends Cardiovas Med 4: 103–109, 1994

    Google Scholar 

  22. Sartipy P, Johansen B, Camejo G, Rosengren B, Bondjers G, Hurt-Camejo E: Binding of human phospholipase A2 type II to proteoglycans. J Biol Chem 271: 26307–26314, 1996

    Google Scholar 

  23. Jans SWS, Van Bilsen M, Reutelingsperger CPM, Borgers M, De Jong YF, Van der Vusse GJ: Annexin V in the adult rat heart: Isolation, localization and quantitation. J Mol Cell Cardiol 27: 335–348, 1995

    Google Scholar 

  24. Schalkwijk C, Pfeilschifter J, Marki F, Van den Bosch H: Interleukin-1-β and forskolin-induced synthesis and secretion of group II phospholipase A2 and prostaglandin E2 in rat mesangial cells is prevented by transforming growth factor β2. J Biol Chem 267: 8846–8851, 1992

    Google Scholar 

  25. Pfeilschifter J, Schalkwijk C, Briner VA, Van den Bosch H: Cytokinestimulated secretion of group II phospholipase A2 by rat mesangial cells. J Clin Invest 92: 2516–2523, 1993

    Google Scholar 

  26. Konieczkowski M, Sedor JR: Cell-specific regulation of type II phospholipase A2 expression in rat mesangial cells. J Clin Invest 92: 2524–2532, 1993

    Google Scholar 

  27. Ohara O, Ishizaki J, Nakano T, Arita H, Tereoka H: A simple and sensitive method for determining transcription initiation site: Identification of two transcription initiation sites in rat group II phospholipase A2 gene. Nucleic Acids Res 18: 6997–7002, 1990

    Google Scholar 

  28. Vervoordeldonk MJBM, Pineda-Torra IM, Aarsman AJ, Van den Bosch H: Aspirin inhibits expression of the interleukin-1β-inducible group II phospholipase A2. FEBS Lett 397: 108–112, 1996

    Google Scholar 

  29. Van den Bosch H, Schalkwijk C, Pfeilschifter J, Marki F: The induction of cellular group II phospholipase A2 by cytokines and its prevention by dexamethasone. Adv Exp Med Biol 318: 1–10, 1992

    Google Scholar 

  30. Walker G, Kunz D, Pignat W, Wiesenberg I, Van den Bosch H, Pfeilschifter J: Tetranactin inhibits interleukin 1β and cAMP induction of group II phospholipase A2 in rat renal mesangial cells. Eur J Pharm 306: 265–270, 1996

    Google Scholar 

  31. Sharp JD, White DL: Cytosolic phospholipase A2 mRNA levels and potential for transcriptional regulation. J Lip Med 8: 183–189, 1993

    Google Scholar 

  32. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ: cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269–278, 1993

    Google Scholar 

  33. Wolf RA, Gross RW: Identification of neutral active phospholipase C which hydrolyzes choline glycerophospholipids and plasmalogen selective phospholipase A2 in canine myocardium. J Biol Chem 260: 7259–7303, 1985

    Google Scholar 

  34. Diez E, Chilton FH, Stroup G, Mayer RJ, Winkler JD, Fonteh AN: Fatty acid and phospholipid selectivity of different phospholipase A2 enzymes studied by using a mammalian membrane as substrate. Biochem J 310: 721–726, 1994

    Google Scholar 

  35. Hazen SL, Gross RW: The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipiase A2 – implication for the coordinated regulation of phospholipolysis and glycolysis. J Biol Chem 268: 9892–9900, 1993

    Google Scholar 

  36. Wolf MJ, Gross RW: The calcium-dependent association and functional coupling of calmodulin with myocardial phospholipase A2. J Biol Chem 271: 20989–20992, 1996

    Google Scholar 

  37. Chen J, Engle SJ, Seilhamer JJ, Tischfield JA: Cloning and recombinant expression of a novel human low molecular weight Ca2+-dependent phospholipase A2. J Biol Chem 269: 2365–2368, 1994

    Google Scholar 

  38. Balsinde J, Dennis EA: Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in P388D1 macrophages. J Biol Chem 271: 6758–6765, 1996

    Google Scholar 

  39. Weglicki WB, Owens K, Urschel CW, Serur JR, Sonnenblick EH: Hydrolysis of myocardial lipids during acidosis and ischemia. Recent Adv Stud Card Struct Metab 3: 781–793, 1973

    Google Scholar 

  40. Chien KR, Han A, Sen A, Buja LM, Willerson JT: Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidyl deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res 54: 313–322, 1984

    Google Scholar 

  41. Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS: Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 50: 538–546, 1982

    Google Scholar 

  42. Van der Vusse GJ, Van Bilsen M, Reneman RS: Is phospholipid degradation a critical event in ischemia-and reperfusion-induced damage. NIPS 4: 49–53, 1989

    Google Scholar 

  43. Van der Vusse GJ, Van Bilsen M, Reneman RS: Ischemia and reperfusion induced alterations in membrane phospholipids: An overview. Ann NY Acad Sci 723: 1–14, 1994

    Google Scholar 

  44. Das DK, Engelman RM, Rousou JA, Breyer RH, Otani H, Lemeshow S: Role of membrane phospholipids in myocardial injury induced by ischemia and reperfusion. Am J Physiol 251: H71–H79, 1986

    Google Scholar 

  45. Buja LM. Lipid abnormalities in myocardial cell injury: Trends Cardiovas Med 1: 40–45, 1991

    Google Scholar 

  46. Van Bilsen M, Van der Vusse GJ, Willemsen PHM, Coumans CA, Roemen THM, Reneman RS: Effect of nicotinic acid and mepacrine on fatty acid accumulation and myocardial damage during ischemia and reperfusion. J Mol Cell Cardiol 22: 155–163, 1990.

    Google Scholar 

  47. Atsma DE: Mechanisms of cell death in energy depleted cardiomyocytes. Role of calcium overload, calpain and phospholipase (1996). Thesis. Rijksuniversiteit Leiden, Leiden, The Netherlands

    Google Scholar 

  48. Kikuchi-Yanoshita R, Yanoshita R, Kudo I, Arai, H, Takamura T, Nokomoto K, Inoue K: Preferential hydrolysis of phosphatidylethanolamine in rat ischemic heart homogenates during in vitro incubation. J Biochem 114: 33–38, 1993

    Google Scholar 

  49. Davies NJ, Schultz R, Olley PM, Strydnadka KD, Panas DL, Lopaschuk GD: Lysoplasmenylethanolamine accumulation in ischemic/reperfused isolated fatty acids perfused hearts. Circ Res 70: 1161–1168, 1992

    Google Scholar 

  50. Vesterqvist O, Sargent CA, Grover GJ, Ogletree ML: Myocardial calciumindependent phospholipase A2 activity during global ischemia in isolated rabbit hearts. Cardiovasc Res 31: 932–940, 1996

    Google Scholar 

  51. Dan P, Ntzan DW, Dagan A, Ginsburg I, Yedgar S: H2O2 renders cells accessible to lysis by exogenous phospholipase A2: A novel mechanism for cell damage in inflammatory processes. FEBS Lett 383: 75–78, 1996

    Google Scholar 

  52. Prasad MR, Lawrentiu MP, Moraru II, Liu X, Maity S, Engelman RM, Das DK: Role of phospholipase A2 and C in myocardial ischemic reperfusion injury. Am J Physiol 260: H873–H877, 1991

    Google Scholar 

  53. Lauritzen I, Heurtaux C, Lazdunski M: Expression of group II PLA2 in rat brain after severe forebrain ischemia and in endotoxin shock. Brain Res 651: 353–356, 1994

    Google Scholar 

  54. Otamiri T, Franzen L, Lindmark D, Tageson C: Increased phospholipase A2 and decreased lysophospholipase activity in the small intestinal mucosa after ischemia and revascularization. Gut 28: 1445–1453, 1987

    Google Scholar 

  55. Maury CPJ, Teppo AM: Circulating tumor necrosis factor alpha (cachetin) in myocardial infarction. J Intern Med 225: 333–336, 1989

    Google Scholar 

  56. Guillén I, Blanes M, Gómez-Lechón MJ, Castell JV: Cytokine signalling during myocardial infarction: Sequential appearance of IL-1 and IL-6. Am J Physiol 269: R229–R235, 1995

    Google Scholar 

  57. Bomalski JS, Steiner MR, Simon PL, Clark MA: IL-1 increases phospholipase A2 activity, expression of phospholipase A2-activating protein, and release of linoleic acid from the murine T helper cell line EL-4. J Immunol 148: 155–160, 1992

    Google Scholar 

  58. Yamauchi-Takihara K, Ihara Y, Ogata A, Yoshizaki K, Azuma J, Kishimoto T: Hypoxic stress induces cardiac myocyte-derived interleukin-6. Circulation 91: 1520–1524, 1995

    Google Scholar 

  59. Philipson KD, Langer GA, Rich TL: Charged amphiphiles regulate heart contractility and sarcolemma-Ca2+ interactions. Am J Physiol 248: H147–H150, 1985

    Google Scholar 

  60. Chien KR: Genes and physiology: Molecular physiology in genetically engineered animals. J Clin Invest 97: 901–909, 1996

    Google Scholar 

  61. Field LJ: Transgenic mice in cardiovascular research. Annu Rev Physiol 55: 97–114, 1993

    Google Scholar 

  62. Chen EP, Bittner HB, Davis D, Folz RJ, Van Trigt P: Extracellular superoxide dismutase transgene overexpression preserves postischemic myocardial function in isolated murine hearts. Circulation 92: 412–417, 1996

    Google Scholar 

  63. Plumier, JCL, Ross BM, Currie RW, Angelidis CE, Kazlaris H, Kollias G, Pagoulatos GN: Transgenic mice expressing the human heat shock protein 70 have improved post ischemic myocardial recovery. J Clin Invest 95: 1854–1860, 1995

    Google Scholar 

  64. Marber MS, Mestril R, Chi SH, Sayen R, Yellon DM, Dillmann WH: Overexpression of the rat inducible 70 kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95: 1446–1456, 1995

    Google Scholar 

  65. Lee KJ, Ross RS, Rockman HA, Harris AN, O'Brien TX, Van Bilsen M, Shubeita HE, Kandolf R, Brem G, Price J, Evans SM, Zhu H, Franz WM, Chien KR: Myosin light chain-2 luciferase transgenic mice reveal distinct regulatory programs for cardiac and skeletal muscle specific expression of a single contractile protein gene. J Biol Chem 267: 15875–15885, 1992

    Google Scholar 

  66. Neely JR, Liebermeister H, Battersby EJ, Morgan HE: Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol 212: 804–814, 1967

    Google Scholar 

  67. Van Bilsen M: The significance of myocardial non-esterified fatty acid accumulation during ischemia and reperfusion. Thesis. University of Limburg, Maastricht, The Netherlands, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Windt, L.J., Reneman, R.S., Van der Vusse, G.J. et al. Phospholipase A2-mediated hydrolysis of cardiac phospholipids: The use of molecular and transgenic techniques. Mol Cell Biochem 180, 65–73 (1998). https://doi.org/10.1023/A:1006886906105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006886906105

Navigation