Skip to main content
Log in

Influence of DNA Delivery Method on Gene Targeting Frequencies in Human Cells

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Gene targeting can be used for genetic studies of human cell lines and has significant potential for somatic cell gene therapy. These applications are however restricted by the low frequency of homologous recombination in higher eukaryotes compared to the relatively efficient nonhomologous integration of transfected DNA into the genome. As part of our attempts to overcome this problem, we compared two widely used transfection methods for their efficiency in gene targeting. To our surprise we found that, for conditions that render similar frequencies of nonhomologous integrants, lipofection is much less efficient than electroporation in generating targeted clones. This suggests that nonhomologous and homologous recombination have different requirements for DNA delivery in human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

LITERATURE CITED

  1. Capecchi, M.R. (1989). Science 244:1288–1292.

    Google Scholar 

  2. Koller, B.H., and Smithies, O. (1992). Annu. Rev. Immunol. 10:705–730.

    Google Scholar 

  3. Yáñez, R.J., and Porter, A.C.G. (1998). Gene Ther. 5:149–159.

    Google Scholar 

  4. Porter, A.C.G. (1996). In N.R. Lemoine, and D.N. Cooper, editors, Gene therapy. BIOS Scientific Publishers, Oxford, Great Britain, pp. 169–190.

    Google Scholar 

  5. Itzhaki, J.E., Gilbert, C.S., and Porter, A.C.G. (1997). Nat. Genet. 15:258–265.

    Google Scholar 

  6. Brown, J.P., Wei, W., and Sedivy, J.M. (1997). Science 277:831–834.

    Google Scholar 

  7. Smithies, O., Gregg, R.G., Boggs, S.S., Koralewski, M.A., and Kucherlapati, R.S. (1985). Nature 317: 230–234.

    Google Scholar 

  8. Lin, F.L., Sperle, K., and Sternberg, N. (1985). Proc. Natl. Acad. Sci. U.S.A. 82:1391–1395.

    Google Scholar 

  9. Song, K.Y., Schwartz, F., Maeda, N., Smithies, O., and Kucherlapati, R. (1987). Proc. Natl. Acad. Sci. U.S.A. 84:6820–6824.

    Google Scholar 

  10. Thomas, K.R., Folger, K.R., and Capecchi, M.R. (1986). Cell 44:419–428.

    Google Scholar 

  11. Boggs, S.S., Gregg, R.G., Borenstein, N., and Smithies, O. (1986). Exp. Hematol. 14:988–994.

    Google Scholar 

  12. Nairn, R.S., Adair, G.M., Porter, T., Pennington, S.L., Smith, D.G., Wilson, J.H., and Seidman, M.M. (1993). Somat. Cell Mol. Genet. 19:363–375.

    Google Scholar 

  13. Waldman, B.C., O'Quinn, J.R., and Waldman, A.S. (1996). Biochim. Biophys. Acta. 1308:241–250.

    Google Scholar 

  14. Ellis, J., and Bernstein, A. (1989). Mol. Cell Biol. 9:1621–1627.

    Google Scholar 

  15. Wang, Q., and Taylor, M.W. (1993). Mol. Cell. Biol. 13:918–927.

    Google Scholar 

  16. Mitani, K., Wakamiya, M., Hasty, P., Graham, F.L., Bradley, A., and Caskey, C.T. (1995). Somat. Cell Mol. Genet. 21:221–231.

    Google Scholar 

  17. Russell, D.W., and Hirata, R.K. (1998). Nat. Genet. 18:325–330.

    Google Scholar 

  18. Shirasawa, S., Furuse, M., Yokoyama, N., and Sasazuki, T. (1993). Science 260:85–88.

    Google Scholar 

  19. Waldman, T., Kinzler, K.W., and Vogelstein, B. (1995). Cancer Res. 55:5187–5190.

    Google Scholar 

  20. Yáñez, R.J., and Porter, A.C.G. (1999). Gene Ther. 6:1282–1290.

    Google Scholar 

  21. Kinosita, K., Jr., and Tsong, T.Y. (1977). Biochim. Biophys. Acta. 471:227–242.

    Google Scholar 

  22. Klenchin, V.A., Sukharev, S.I., Serov, S.M., Chernomordik, L.V., and Chizmadzhev Yu, A. (1991). Biophys. J. 60:804–811.

    Google Scholar 

  23. Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K.A., and Welsh, M.J. (1995). J. Biol. Chem. 270: 18997–19007.

    Google Scholar 

  24. Coonrod, A., Li, F.Q., and Horwitz, M. (1997). Gene Ther. 4:1313–1321.

    Google Scholar 

  25. Dean, D.A. (1997). Exp. Cell Res. 230:293–302.

    Google Scholar 

  26. Loyter, A., Scangos, G., Juricek, D., Keene, D., and Ruddle, F.H. (1982). Exp. Cell Res. 139:223–234.

    Google Scholar 

  27. Fasbender, A., Marshall, J., Moninger, T.O., Grunst, T., Cheng, S., and Welsh, M.J. (1997). Gene Ther. 4:716–725.

    Google Scholar 

  28. Kowalczykowski, S.C., and Eggleston, A.K. (1994). Annu. Rev. Biochem. 63:991–1043.

    Google Scholar 

  29. Chu, G. (1997). J. Biol. Chem. 272:24097–24100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C.G. Porter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yáñez, R.J., Porter, A.C. Influence of DNA Delivery Method on Gene Targeting Frequencies in Human Cells. Somat Cell Mol Genet 25, 27–31 (1999). https://doi.org/10.1023/B:SCAM.0000007137.28557.73

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SCAM.0000007137.28557.73

Keywords

Navigation