Skip to main content
Log in

Multiple Actions of the Human Immunodeficiency Virus Type-1 Tat Protein on Microglial Cell Functions

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The human immunodeficiency virus type-1 (HIV-1) regulatory protein Tat is produced in the early phase of infection and is essential for virus replication. Together with other viral products, Tat has been implicated in the pathogenesis of HIV-1–associated dementia (HAD). As HIV-1 infection in the brain is very limited and macrophage/microglial cells are the only cellular type productively infected by the virus, it has been proposed that many of the viral neurotoxic effects are mediated by microglial products. We and others have shown that Tat affects the functional state of microglial cells, supporting the hypothesis that activated microglia play a role in the neuropathology associated with HIV-1 infection. This review describes the experimental evidence indicating that Tat stimulates microglia to synthesize potentially neurotoxic molecules, including proinflammatory cytokines and free radicals, and interferes with molecular mechanisms controlling cAMP levels, intracellular [Ca2+], and ion channel expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

references

  1. Chang, H. K., Gallo, R. C., and Ensoli, B. 1995. Regulation of cellular gene expression and function by the human immunodeficiency virus type 1 Tat protein. J. Biomed. Sci. 2:189–202.

    Google Scholar 

  2. Chang, H. C., Samaniego, F., Nair, B. C., Buonaguro, L., and Ensoli, B. 1997. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 11:1421–1431.

    Google Scholar 

  3. Westendorp, M. O., Shratov, V. A., Shultze-Osthoff, K., Frank, R., Kraft, M., Los, M., Krammer, P. H., Droge, W., and Lehmann, V. 1995. HIV-1 tat potentiates TNF-induced NF-κB activation and cytotoxicity by altering the cellular redox state. EMBO J. 14:546–554.

    Google Scholar 

  4. Frankel, A. D. and Pabo, C. O. 1988. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 55:1189–1193.

    Google Scholar 

  5. Liu, Y., Jones, M., Hingtgen, C. M., Bu, G., Laribee, N., Tanzi, R. E., Moir, R. D., Nath, A., and He, J. J. 2000. Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat. Med. 6:1380–1387.

    Google Scholar 

  6. Noonan, D. and Albini, A. 2000. From the outside in: extracellular activities of HIV Tat. Adv. Pharmacol. 48:229–250.

    Google Scholar 

  7. Nath, A. and Geiger, J. 1998. Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms. Prog. Neurobiol. 54:19–33.

    Google Scholar 

  8. Kolson, D. L. and Gonzalez-Scarano, F. 2000. HIV and HIV dementia. J. Clin. Invest. 106:11–13.

    Google Scholar 

  9. Maragos, W. F., Tillman, P., Jones, M., Bruce-Keller, A. J., Roth, S., Bell, J. E., and Nath, A. 2003. Neuronal injury in hippocampus with human immunodeficiency virus transactivating protein. Tat. Neuroscience. 117:43–53.

    Google Scholar 

  10. Bansal, A. K., Mactutus, C. F., Nath, A., Maragos, W., Hauser, K. F., and Booze R. M. 2000. Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res. 879:42–49.

    Google Scholar 

  11. Kim, B. O., Liu, Y., Ruan, Y., Xu, Z. C., Schantz, L., and He, J. J. 2003. Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am. J. Pathol. 162:1693–1707.

    Google Scholar 

  12. Jones, M., Olafson, K., Del Bigio, M. R., Peeling, J., and Nath, A. 1998. Intraventricular injection of human immunodeficiency virus type 1 Tat protein causes inflammation, gliosis, apoptosis and ventricular enlargement. J. Neurophatol. Exp. Neurol. 57:563–570.

    Google Scholar 

  13. Nath, A., Conant, K., Chen, P., Scott, C., and Major, E. O. 1999. Transient exposure to HIV-1 Tat protein results in cytokine production in macrophages and astrocytes. J. Biol. Chem. 274:17098–17102.

    Google Scholar 

  14. Brana, C., Biggs, T. E., Barton, C. H., Sundstrom, L. E., and Mann, D. A. 1999. A soluble factor produced by macrophages mediates the neurotoxic effects of HIV-1 Tat in vitro. AIDS 13:1443–1452.

    Google Scholar 

  15. Magnuson, D. S. K., Knudsen, B. E., Geiger, J. D., Brownstone, R. M., and Nath, A. 1995. Human immunodeficiency virus type 1 tat activates non-n-methyl-d-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann. Neurol. 37:373–380.

    Google Scholar 

  16. Kruman, I. I., Nath, A., and Mattson, M. P. 1998. HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp. Neurol. 154(2):276–288.

    Google Scholar 

  17. Kolb, H. and Kolb-Bachofen, V. 1998. Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol. Today 19:556–561.

    Google Scholar 

  18. Minghetti, L. and Levi, G. 1998. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54:99–125.

    Google Scholar 

  19. Munoz-Fernandez, M. and Fresno, M. 1998. The role of tumor necrosis factor, interleukin 6, interferon-γ and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog. Neurobiol. 56:307–340.

    Google Scholar 

  20. Bukrinsky, M. L., Nottet, H. S. L. M., Schmidtmayerova, H., Dubrovsky, L., Flanagan, C. R., Mullins, M. E., Lipton, S. A., and Gendelman, H. E. 1995. Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1-infected monocytes: implications for HIV-associated neurological disease. J. Exp. Med. 181:735–745.

    Google Scholar 

  21. Liu, X., Jana, M., Dasgupta, S., Koka, S., He, J., Wood, C., and Pahan, K. 2002. Human immunodeficiency virus type 1 (HIV-1) tat induces nitric-oxide synthase in human astroglia. J. Biol. Chem. 277:39312–39319.

    Google Scholar 

  22. Koka, P., He, K., Zack, J. A., Kitchen, S., Peacock, W., Fried, I., Tran, T., Yashar, S. S., and Merrill, J. E. 1995. Human immuno-deficiency virus 1 envelope proteins induce interleukin 1, tumor necrosis factor α, and nitric oxide in glial cultures derived from fetal, neonatal and adult human brain. J. Exp. Med. 182:941–952.

    Google Scholar 

  23. Kong, L. Y., Wilson, B. C., McMillian, M. K., Bing, G., Hudson, P. M., and Hong, J. S. 1996. The effect of the HIV-1 envelope protein gp 120 on the production of nitric oxide and proinflammatory cytokines in mixed glial cell cultures. Cell. Immunol. 172:77–83.

    Google Scholar 

  24. Adamson, D. C., Wildemann, B., Sasaki, M., Glass, J. D., Mcarthur, J. C., Christov, V. I., Dawson, T. M., and Dawson, V. L. 1996. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp 41. Science 274:1917–1921.

    Google Scholar 

  25. Polazzi, E., Levi, G., and Minghetti, L. 1999. Human immuno-deficiency virus type 1 Tat protein stimulates inducible nitric oxide synthase expression and nitric oxide production in microglial cultures. J. Neuropathol. Exp. Neurol. 58:825–831.

    Google Scholar 

  26. Mann, D. A. and Frankel, A. D. 1991. Endocytosis and targeting of exogenous HIV-1 tat protein. EMBO J. 10:1733–1739.

    Google Scholar 

  27. Efthymiadis, A., Briggs, L. J., and Jans, D. A. 1998. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J. Biol. Chem. 273:1623–1628.

    Google Scholar 

  28. Popko, B., Corbin, J. G., Baerwald, K. D., Dupree, J., and Garcia, A. M. 1997. The effects of the interferon-γ on the central nervous system. Mol. Neurobiol. 14:119–135.

    Google Scholar 

  29. Barillari, G., Gendelman, R., Gallo, R. C., and Ensoli, B. 1993. The tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. Proc. Natl. Acad. Sci. USA 90:7941–7945.

    Google Scholar 

  30. Barton, C. H., Biggs, T. E., Mee, T. R., and Mann, D. A. 1996. The human immunodeficiency virus type 1 regulatory protein tat inhibits interferon-induced iNOS activity in a murine macrophage cell line. J. Gen. Virol. 77:1643–1647.

    Google Scholar 

  31. Guastadisegni, C., Minghetti, L., Nicolini, A., Polazzi, E., Ade, P., Balduzzi, M., and Levi, G. 1997. Prostaglandin E2 synthesis is differentially affected by reactive nitrogen intermediates in cultured rat microglia and RAW 264.7 cells. FEBS Lett. 413:314–318.

    Google Scholar 

  32. Wink, D. A. and Mitchell, J. B. 1998. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 25:434–456.

    Google Scholar 

  33. Greco, A, Minghetti, L, and Levi, G. 2000. Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases. Neurochem. Res. 25:1357–1364.

    Google Scholar 

  34. Klein, J. A. and Ackerman, S. L. 2003. Oxidative stress, cell cycle, and neurodegeneration. J. Clin. Invest. 111:785–793.

    Google Scholar 

  35. Turchan, J., Pocernich, C. B., Gairola, C., Chauhan, A., Schifitto, G., Butterfield, D. A., Buch, S., Narayan, O., Sinai, A., Geiger, J., Berger, J. P., Elford, H., and Nath, A. 2003. Oxidative stress in HIV demented patients and protection ex vivo with novel antioxidants. Neurology 60:307–314.

    Google Scholar 

  36. Flores, S. C., Marecki, J. C., Harper, K. P., Bose, S. K., Nelson, S. K., and McCord, J. M. 1993. Tat protein of human immuno-deficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl. Acad. Sci. USA 90:7632–7636.

    Google Scholar 

  37. Lachgar, A., Sojic, N., Arbault, S., Bruce, D., Sarasin, A., Amatore, C., Bizzini, B., Zagury, D., and Vuillaume, M. 1999. Amplification of the inflammatory cellular redox state by human immunodeficiency virus type 1-immunosuppressive tat and gp 160 proteins. J. Virol. 73:1447–1452.

    Google Scholar 

  38. Toborek, M., Lee, Y. W., Pu, H., Malecki, A., Flora, G., Garrido, R., Hennig, B., Bauer, H. C., and Nath, A. 2003. HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. J. Neurochem. 84:169–179.

    Google Scholar 

  39. Choi, J., Liu, R. M., Kundu, R. K., Sangiorgi, F., Wu, W., Maxson, R., and Forman, H. J. 2000. Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 275:3693–3698.

    Google Scholar 

  40. Flora, G., Lee, Y. W., Nath, A., Hennig, B., Maragos, W., and Toborek, M. 2003. Methamphetamine potentiates HIV-1 Tat protein-mediated activation of redox-sensitive pathways in discrete regions of the brain. Exp. Neurol. 179:60–70.

    Google Scholar 

  41. Gurwell, J. A., Nath, A., Sun, Q., Zhang, J., Martin, K. M., Chen, Y., and Hauser, K. F. 2001. Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 Tat protein in striatal neurons in vitro. Neuroscience 102:555–563.

    Google Scholar 

  42. Nicolini, A., Ajmone-Cat, M. A., Bernardo, A., Levi, G., and Minghetti, L. 2001. Human immunodeficiency virus type-1 Tat protein induces nuclear factor (NF)-kappaB activation and oxidative stress in microglial cultures by independent mechanisms. J. Neurochem. 79:713–716.

    Google Scholar 

  43. Lawson, J. A., Rokach, J., and Fitzgerald, G. A. 1999. Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J. Biol. Chem. 274:24441–24444.

    Google Scholar 

  44. Morrow, J. D. and Roberts, L. J. 1997. The isoprostanes: unique bioactive products of lipid peroxidation. Prog. Lipid Res. 36:1–21.

    Google Scholar 

  45. Cracowski, J. L., Durand, T., and Bessard, G. 2002. Isoprostanes as a biomarker of lipid peroxidation in humans: physiology, pharmacology and clinical implications. Trends Pharmacol. Sci. 23:360–366.

    Google Scholar 

  46. Klein, T., Neuhaus, K., Reutter, F., and Nusing, R. M. 2001. Generation of 8-epi-prostaglandin F(2alpha) in isolated rat kidney glomeruli by a radical-independent mechanism. Br. J. Pharmacol. 133:643–650.

    Google Scholar 

  47. Minghetti, L., Polazzi, E., Nicolini, A., Créminon, C., and Levi, G. 1996. IFN-γ and nitric oxide down-regulate LPS-induced production in cultured rat microglial cells. J. Neurochem. 66:1963–1970.

    Google Scholar 

  48. Sheng, W. S., Hu, S., Hegg, C. C., Thayer, S. A., and Peterson, P. K. 2000. Activation of human microglial cells by HIV-1 gp41 and Tat proteins. Clin. Immunol. 96:243–251.

    Google Scholar 

  49. Spellberg, B. and Edwards, J. E., Jr. 2001. Type 1/Type 2 immunity in infectious diseases. Clin. Infect. Dis. 32:76–102.

    Google Scholar 

  50. Rosenberg, Z. F. and Fauci, A. S. 1990. Immunopathogenic mechanisms of HIV infection: cytokine induction of HIV expression. Immunol. Today 11:176–180.

    Google Scholar 

  51. Ostrowski, S. R., Gerstoft, J., Pedersen, B. K., and Ullum, H. 2003. Impaired production of cytokines is an independent predictor of mortality in HIV-1-infected patients. AIDS 17:521–530.

    Google Scholar 

  52. Schmidtmayerova, H., Nottet, H. S., Nuovo, G., Raabe, T., Flanagan, C. R., Dubrovsky, L., Gendelman, H. E., Cerami, A., Bukrinsky, M., and Sherry, B. 1996. Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes. Proc. Natl. Acad. Sci. USA 93:700–704.

    Google Scholar 

  53. Bonwetsch, R., Croul, S., Richardson, M. W., Lorenzana, C., Valle, L. D., Sverstiuk, A. E., Amini, S., Morgello, S., Khalili, K., and Rappaport, J. 1999. Role of HIV-1 Tat and CC chemokine MIP-1alpha in the pathogenesis of HIV associated central nervous system disorders. J. Neurovirol. 5:685–694.

    Google Scholar 

  54. Rappaport, J., Joseph, J., Croul, S., Alexander, G., Del Valle, L., Amini, S., and Khalili, K. 1999. Molecular pathway involved in HIV-1-induced CNS pathology: role of viral regulatory protein, Tat. J. Leukoc. Biol. 65:458–465.

    Google Scholar 

  55. Zhou, Q. and Sharp, P. A. 1995. Novel mechanism and factor for regulation by HIV-1 Tat. EMBO J. 14:321–328.

    Google Scholar 

  56. Nabel, G. J. 1988. Activation of human immunodeficiency virus. J. Lab. Clin. Med. 111:495–500.

    Google Scholar 

  57. Capini, C. J., Richardson, M. W., Hendel, H., Sverstiuk, A., Mirchandani, J., Regulier, E. G., Khalili, K., Zagury, J. F., and Rappaport, J. 2001. Autoantibodies to TNF-α in HIV-1 infection: prospects for anti-cytokine vaccine therapy. Biomed. Pharmacother. 55:23–31.

    Google Scholar 

  58. Chen, P., Mayne, M., Power, C., and Nath, A. 1997. The tat protein of HIV-1 induces tumor necrosis factor-α production. J. Biol. Chem. 272:22385–22388.

    Google Scholar 

  59. Sawaya, B. E., Thatikunta, P., Denisova, L., Brady, J., Khalili, K., and Amini, S. 1998. Regulation of TNFalpha and TGFbeta-1 gene transcription by HIV-1 Tat in CNS cells. J. Neuroimmunol. 87:33–42.

    Google Scholar 

  60. Mayne, M., Holden, C. P., Nath, A., and Geiger, J. D. 2000. Release of calcium from inositol 1,4,5-trisphosphate receptor-regulated stores by HIV-1 Tat regulates TNF-alpha production in human macrophages. J. Immunol. 164:6538–6542.

    Google Scholar 

  61. Haughey, N. J. and Mattson, M. P. 2002. Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J. Acquir. Immune. Defic. Syndr. 31(Suppl 2):S55–S61.

    Google Scholar 

  62. Haughey, N. J., Holden, C. P., Nath, A., and Geiger, J. D. 1999. Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J. Neurochem. 73:1363–1374.

    Google Scholar 

  63. Cheng, J., Nath, A., Knudsen, B., Hochman, S., Geiger, J. D., Ma, M., and Magnuson, D. S. K. 1998. Neuronal excitatory properties of human immunodeficiency virus type 1 TAT protein. Neuroscience 82:97–106.

    Google Scholar 

  64. Albini, A., Ferrini, S., Benelli, R., Sforzini, S., Giunciuglio, D., Aluigi, M. G., Proudfoot, A. E., Alouani, S., Wells, T. N., Mariani, G., Rabin, R. L., Farber, J. M., and Noonan, D. M. 1998. HIV-1 Tat protein mimicry of chemokines. Proc. Natl. Acad. Sci. USA 95:13153–13158.

    Google Scholar 

  65. Hegg, C. C., Hu, S., Peterson, P. K., and Thayer, S. A. 2000. Beta-chemokines and human immunodeficiency virus type-1 proteins evoke intracellular calcium increases in human microglia. Neuroscience 98:191–199.

    Google Scholar 

  66. Watanabe, N., Suzuki, J., and Kobayashi, Y. 1996. Role of calcium in tumor necrosis factor-alpha production by activated macrophages. J. Biochem. (Tokyo) 120:1190–1195.

    Google Scholar 

  67. Bennasser, Y., Badou, A., Tkaczuk, J., and Bahraoui E. 2002. Signaling pathways triggered by HIV-1 Tat in human monocytes to induce TNF-alpha. Virology 303:174–180.

    Google Scholar 

  68. Aloisi, F., Penna, G., Cerase, J., Menendez Iglesias, B., and Adorini, L. 1997. IL-12 production by central nervous system microglia is inhibited by astrocytes. J. Immunol. 159:1604–1612.

    Google Scholar 

  69. Prinz, M., Hausler, K. G., Kettenmann, H., and Hanisch, U. 2001. Beta-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia. Brain Res. 899:264–270.

    Google Scholar 

  70. Minghetti, L., Nicolini, A., Polazzi, E., Créminon, C., Maclouf, J., and Levi, G. 1997. Inducibile nitric oxide synthase expression in activated rat microglial cultures is downregulated by exogenous prostaglandin E2 and by cyclooxigenase inhibitors. Glia 19:152–160.

    Google Scholar 

  71. Kim, E. J., Kwon, K. J., Park, J. Y., Lee, S. H., Moon, C. H., and Baik E. J. 2002. Neuroprotective effects of prostaglandin E2 or cAMP against microglial and neuronal free radical mediated toxicity associated with inflammation. J. Neurosci. Res. 70:97–107.

    Google Scholar 

  72. Zhang, B., Yang, L., Konishi, Y., Maeda, N., Sakanaka, M., and Tanaka, J. 2002. Suppressive effects of phosphodiesterase type IV inhibitors on rat cultured microglial cells: comparison with other types of cAMP-elevating agents. Neuropharmacology. 42:262–269.

    Google Scholar 

  73. Caggiano, A. O. and Kraig, R. P. 1999. Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1 beta production. J. Neurochem. 72:565–575.

    Google Scholar 

  74. Aloisi, F., De Simone, R., Columba Cabezas, S., and Levi, G. 1999. Opposite effects of interferon-γ and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro-and anti-inflammatory activities. J. Neurosci. Res. 56:571–580.

    Google Scholar 

  75. Suzumura, A., Ito, A., Yoshikawa, M., and Sawada, M. 1999. Ibudilast suppresses TNF-α production by glial cells functioning mainly as type III phosphodiesterase inhibitor in the CNS. Brain Res. 837:203–212.

    Google Scholar 

  76. Kim, W. K., Kan, Y., Ganea, D., Hart, R. P., Gozes, I., and Jonakait, G. M. 2000. Vasoactive intestinal peptide and pituitary adenylyl cyclase-activating polypeptide inhibit tumor necrosis factor-alpha production in injured spinal cord and in activated microglia via a cAMP-dependent pathway. J. Neurosci. 20:3622–3630.

    Google Scholar 

  77. Facchinetti, F., Del Giudice, E., Furegato, S., Passarotto, M., and Leon A. 2003. Cannabinoids ablate release of TNF-α in rat microglial cells stimulated with lypopolysaccharide. Glia 41:161–168.

    Google Scholar 

  78. Menèndez Iglesias, B., Cerase, J., Ceracchini, C., Levi, G., and Aloisi, F. 1997. Analysis of B7-2 costimulatory ligands in cultured mouse microglia: upregulation by interferon-gamma and lipopolysaccharide and downregulation by interleukin-10, prostaglandin E2 and cyclic AMP-elevating agents. J. Neuroimmunol. 72:83–93.

    Google Scholar 

  79. Hellendal, R. P. and Ting, J. P. 1997. Differential regulation of cytokine-induced major histocompatibility complex class II expression and nitric oxide release in rat microglia and astrocytes by effectors of tyrosine kinase, protein kinase C, and cAMP. J. Neuroimmunol. 74:19–29.

    Google Scholar 

  80. Delgado, M., Jonakait, G. M., and Ganea, D. 2002. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39:148–161.

    Google Scholar 

  81. Minghetti, L., Polazzi, E., Nicolini, A., Créminon, C., and Levi, G. 1997. Up-regulation of cyclooxygenase-2 expression in cultured microglia by prostaglandin E2, cyclic AMP and non-steroidal anti-inflammatory drugs. Eur. J. Neurosci. 9:934–940.

    Google Scholar 

  82. Théry, C., Dobbertin, A., and Mallat, M. 1994. Downregulation of in vitro neurotoxicity of brain macrophages by prostaglandins E2 and a β-adrenergic agonist. Glia 11:383–386.

    Google Scholar 

  83. Genain, C. P., Roberts, T., Davis, R. L., Nguyen, M-H., Uccelli, A., Faulds, D., Li, Y., Hedgpeth, J., and Hauser, S. L. 1995. Prevention of autoimmune demyelination in non-human primates by a cAMP-specific phosphodiesterase inhibitor. Proc. Natl. Acad. Sci. USA 92:3601–3605.

    Google Scholar 

  84. Kato, H., Araki, T., Itoyama, Y., and Kogure K. 1995. Rolipram, a cyclic AMP-selective phosphodiesterase inhibitor, reduces neuronal damage following cerebral ischemia in the gerbil. Eur. J. Pharmacol. 272:107–110.

    Google Scholar 

  85. Suzumura, A., Sawada, M., Makino, M., and Takayanagi, T. 1998. Propentophylline inhibits production of TNF-α and infection of LP-BM5 murine leukemia virus in glial cells. J. Neurovirol. 4:553–559.

    Google Scholar 

  86. Patrizio, M., Costa, T., and Levi, G. 1995. Interferon-g and lipopolysaccharide reduce cAMP responses in coltured glial cells: reversal by a type IV phosphodiesterase inhibitor. Glia 14:94–100.

    Google Scholar 

  87. Levi, G., Patrizio, M., Bernardo, A., Petrucci, T. C., and Agresti C. 1993. Human immunodeficiency virus coat protein gp120 inhibits the β-adrenergic regulation of astroglial and microglial functions. Proc. Natl. Acad. Sci. USA 90:1541–1545.

    Google Scholar 

  88. Patrizio, M., Colucci, M., and Levi G. 2001. Human immuno-deficiency virus type 1 Tat protein decreases cyclic AMP synthesis in rat microglial cells. J. Neurochem. 77:399–407.

    Google Scholar 

  89. Secchiero, P., Zella, D., Curreli, S., Mirandola, P., Capitani, S., Gallo, R. C., and Zauli, G. 2000. Pivotal role of cyclic nucleoside phosphodiesterase 4 in Tat-mediated CD4+ T cell hyperactiva-tion and HIV type 1 replication. Proc. Natl. Acad. Sci. USA 97:14620–14625.

    Google Scholar 

  90. Zauli, G., Milani, D., Mirandola, P., Mazzoni, M., Secchiero, P., Miscia, S., and Capitani, S. 2001. HIV-1 Tat protein down-regulates CREB transcription factor expression in PC12 neuronal cells through a phosphatidylinositol 3-kinase/AKT/cyclic nucleoside phosphodiesterase pathway. FASEB J. 15:483–491.

    Google Scholar 

  91. Meyer, T. E., Waeber, G., Lin, J., Beckmann, W., and Habener, J. F. 1993. The promoter of the gene encoding 3′, 5′-cyclic adenosine monophosphate (cAMP) response element binding protein contains cAMP response elements: evidence for positive autoregulation of gene transcription. Endocrinology 132:770–780.

    Google Scholar 

  92. Kettenmann, H., Hoppe, D., Gottmann, K., Banati, R., and Kreutzberg, G. 1990. Cultured microglial cells have a distinct pattern of membrane channels different from peritoneal macrophages. J. Neurosci. Res. 26:278–287.

    Google Scholar 

  93. Korotzer, A. and Cotman, C. W. 1992. Voltage-gated currents expressed by rat microglia in culture. Glia 6:81–88.

    Google Scholar 

  94. Visentin, S., Agresti, C., Patrizio, M., and Levi, G. 1995. Ion channels in rat microglia and their different sensitivity to lipopolysaccharide and interferon-gamma. J. Neurosci. Res. 42:439–451.

    Google Scholar 

  95. Eder, C., Fischer, H. G., Hadding, U., and Heinemann, U. 1995. Properties of voltage-gated potassium currents of microglia differentiated with granulocyte/macrophage colony-stimulating factor. J. Membr. Biol. 147:137–146.

    Google Scholar 

  96. Nörenberg, W., Gebicke-Haerter, P. J., and Illes, P. 1992. Inflammatory stimuli induce a new K+ outward current in cultured rat microglia. Neurosci. Lett. 147:171–174.

    Google Scholar 

  97. Visentin, S. and Levi, G. 1997. Protein kinase C involvement in the resting and interferon-γ-induced K+ channel profile of microglial cells. J. Neurosci. Res. 47:233–241.

    Google Scholar 

  98. Kettenmann, H., Banati, R., and Walz, W. 1993. Electrophysiological behavior of microglia. Glia 7:93–101.

    Google Scholar 

  99. Schilling, T., Quandt, F. N., Cherny, V. V., Zhou, W., Heinemann, U., Decoursey, T. E., and Eder, C. 2000. Upregulation of Kv1.3 K(+) channels in microglia deactivated by TGF-beta. Am. J. Physiol. Cell. Physiol. 279:C1123–C1134.

    Google Scholar 

  100. Kotecha, S. A. and Schlichter, L. C. 1999. A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J. Neurosci. 19:10680–10693.

    Google Scholar 

  101. Boucsein, C., Kettenmann, H., and Nolte, C. 2000. Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur. J. Neurosci. 12:2049–2058.

    Google Scholar 

  102. Visentin, S., Renzi, M., and Levi, G. 2001. Altered outward-rectifying K+ current reveals microglial activation by HIV-1 Tat protein. Glia 33:319–325.

    Google Scholar 

  103. Lewis, R. S. and Cahalan, M. D. 1995. Potassium and calcium channels in lymphocytes. Annu. Rev. Immunol. 13:623–654.

    Google Scholar 

  104. Freedman, B. D., Price, M. A., and Deutsch, C. J. 1992. Evidence for voltage modulation of IL-2 production in mitogen-stimulated human peripheral blood lymphocytes. J. Immunol. 149:3784–3794.

    Google Scholar 

  105. Lin, C. S., Boltz, R. C., Blake, J. T., Nguyen, M., Talento, A., Fischer, P. A., Springer, M. S., Sigal, N. H., Slaughter, R. S., Garcia, M. L., Kaczorowski, G. J., and Koo, G. C. 1993. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J. Exp. Med. 117:637–645.

    Google Scholar 

  106. Koo, C. G., Blake, J. T., Talento, A., Nguyen, M., Lin, S., Sirotina, A., Shah, K., Mulvany, K., Hora, D., Cunningham, P., Wunderler, D. L., McManus, B. O., Slaughter, R., Bugianesi, R., Felix, J., Garcia, M., Williamson, J., Kaczorowski, G., Sigalm, H. N., Springerm, M. S., and Feeney, W. 1997. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J. Immunol. 158:5120–5128.

    Google Scholar 

  107. Schlichter, L. C., Sakellaropoulos, G., Ballyk, B., Pennefather, P. S., and Phipps, D. J. 1996. Properties of K+ and Cl channels and their involvement in proliferation of rat microglial cells. Glia 17:225–236.

    Google Scholar 

  108. Khanna, R., Roy, L., Zhu, X., and Schlichter, L. C. 2001. K+ channels and the microglial respiratory burst. Am. J. Physiol. Cell Physiol. 280:C796–806.

    Google Scholar 

  109. Cheeseman, C. I. 1991. Molecular mechanisms involved in the regulation of amino acid transport. Prog. Biophys. Mol. Biol. 55:71–84.

    Google Scholar 

  110. Walev, I., Reske, K., Palmer, M., Valeva, A., and Bhakdi, S. 1995. Potassium-inhibited processing of IL-1β in human monocytes. EMBO J. 14:1607–1614.

    Google Scholar 

  111. DeCoursey, T. E. and Grinstein, S. 1999. Ion channels and carriers in leukocytes: distribution and functional roles. Pages 639–659, in: Gallin, J. I. and Snyderman, R. (eds.), Inflammation: basic principles and clinical correlates. Lippincott Williams & Wilkins, Philadelphia.

    Google Scholar 

  112. Christman, J. W., Blackwell, T. S., and Juurlink, B. H. 2000. Redox regulation of nuclear factor κB: therapeutic potential for attenuating inflammatory responses. Brain. Pathol. 10:153–162.

    Google Scholar 

  113. Dollard, S. C., James, H. J., Sharer, L. R., Epstein, L. G., Gelbard, H. A., and Dewhurst, S. 1995. Activation of nuclear factor kappa B in brains from children with HIV-1 encephalitis. Neuropathol. Appl. Neurobiol. 21:518–528.

    Google Scholar 

  114. Rostasy, K., Monti, L., Yiannoutsos, C., Wu, J., Bell, J., Hedreen, J., and Navia, B. A. 2000. NFkappaB activation, TNF-alpha expression, and apoptosis in the AIDS-dementia-complex. J. Neurovirol. 6:537–543.

    Google Scholar 

  115. Bruce-Keller, A. J., Barger, S. W., Moss, N. I., Pham, J. T., Keller, J. N., and Nath, A. 2001. Proinflammatory and prooxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17 beta-estradiol. J. Neurochem. 78:1315–1324.

    Google Scholar 

  116. Demarchi, F., d'Adda di Fagagna, F., Falaschi, A., and Giacca, M. 1996. Activation of transcription factor NF-κB by the Tat protein of human immunodeficiency virus type 1. J. Virol. 70:4427–4437.

    Google Scholar 

  117. Bowie, A. and O'Neill, L. A. 2000. Oxidative stress and nuclear factor-κB activation: a reassessment of the evidence in the light of recent discoveries. Biochem. Pharmacol. 59:13–23.

    Google Scholar 

  118. Taylor, J. P., Pomerantz, R. J., Oakes, J. W., Khalili, K., and Amini, S. 1995. A CNS-enriched factor that binds to NF-κB and is required for interaction with HIV-1 tat. Oncogene. 10:395–400.

    Google Scholar 

  119. Cheng, H., Tarnok, J., and Parks, W. P. 1998. Human immunodeficiency virus type 1 genome activation induced by human T cell leukemia virus type 1 tax protein is through cooperation of NF-κB and tat. J. Virol. 72:6911–6916.

    Google Scholar 

  120. Jeang, K. T., Chun, R., Lin, N. H., Gatignol, A., Glabe, C. G., and Fan, H. 1993. In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J. Virol. 67:6224–6233.

    Google Scholar 

  121. Marzio, G., Tyagi, M., Gutierrez, M. I., and Giacca, M. 1998. HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc. Natl. Acad. Sci. USA 95:13519–13524.

    Google Scholar 

  122. Demarchi, F., Gutierrez, M. I., and Giacca, M. 1999. Human immunodeficiency virus type 1 tat protein activates transcription factor NF-κB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J. Virol. 73:7080–7086.

    Google Scholar 

  123. Conant, K., Ma, M., Nath, A., and Major, E. O. 1996. Extracellular human immunodeficiency virus type 1 tat protein is associated with an increase in both NF-κB binding and protein kinase activity in primary astrocytes. J. Virol. 70:1384–1389.

    Google Scholar 

  124. Conant, K., Garzino-Demo, A., Nath, A., Mcarthur, J. C., Halliday, W., Power, C., Gallo, R. C., and Major, E. O. 1998. Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. Proc. Natl. Acad. Sci. USA 95:3117–3121.

    Google Scholar 

  125. Ott, M., Lovett, J. L., Mueller, L., and Verdin, E. 1998. Superinduction of IL-8 in T cells by HIV-1 tat protein is mediated through NF-κB factors. J. Immunol. 160:2872–2880.

    Google Scholar 

  126. Westendorp, M. O., Frank, R., Ochsenbauer, C., Stricker, K., Dhein, J., Walczak, H., Debatin, K. M., and Krammer, P. H. 1995. Sensitization of T cells to CD95-mediated apoptosis by HIV-1 Tat and gp120. Nature 375:497–500.

    Google Scholar 

  127. Lipton, S. A. 1998. Neuronal injury associated with HIV-1: approaches to treatment. Annu. Rev. Pharmacol. Toxicol. 38:159–177.

    Google Scholar 

  128. Brooke, S. M. and Sapolsky, R. M. 2002. Glucocorticoid exacerbation of gp120 neurotoxicity: role of microglia. Exp. Neurol. 177:151–158.

    Google Scholar 

  129. Vallat-Decouvelaere, A. V., Chretien, F., Gras, G., Le Pavec, G., Dormont, D., and Gray, F. 2003. Expression of excitatory amino acid transporter-1 in brain macrophages and microglia of HIV-infected patients. A neuroprotective role for activated microglia? J. Neuropathol. Exp. Neurol. 62:475–485.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Minghetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minghetti, L., Visentin, S., Patrizio, M. et al. Multiple Actions of the Human Immunodeficiency Virus Type-1 Tat Protein on Microglial Cell Functions. Neurochem Res 29, 965–978 (2004). https://doi.org/10.1023/B:NERE.0000021241.90133.89

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000021241.90133.89

Navigation