Skip to main content
Log in

Interplay between mitochondria and cellular calcium signalling

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Mitochondria are increasingly ascribed central roles in vital cell signalling cascades. These organelles are now recognised as initiators and transducers of a range of cell signals, including those central to activation and amplification of apoptotic cell death. Moreover, as the main source of cellular ATP, mitochondria must be responsive to fluctuating energy demands of the cell. As local and global fluctuations in calcium concentration are ubiquitous in eukaryotic cells and are the common factor in a dizzying array of intra- and inter-cellular signalling cascades, the relationships between mitochondrial function and calcium transients is currently a subject of intense scrutiny. It is clear that mitochondria not only act as local calcium buffers, thus shaping spatiotemporal aspects of cytosolic calcium signals, but that they also respond to calcium uptake by upregulating the tricarboxylic acid cycle, thus reacting metabolically to local signalling. In this chapter we review current knowledge of mechanisms of mitochondrial calcium uptake and release and discuss the consequences of mitochondrial calcium handling for cell function, particularly in conjunction with mitochondrial oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchell P: Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148, 1961

    Google Scholar 

  2. Dhalla NS: Excitation-contraction coupling in heart. I. Comparison of calcium uptake by the sarcoplasmic reticulum and mitochondria of the rat heart. Arch Int Physiol Biochim 77: 916–934, 1969

    PubMed  Google Scholar 

  3. Harris EJ, Berent C: Calcium ion-induced uptakes and transformations of substrates in liver mitochondria. Biochem J 115: 645–652, 1969

    PubMed  Google Scholar 

  4. Lehninger AL: Acid-base changes in mitochondria and medium during energy-dependent and energy-independent binding of Ca2+. Annal NY Acad Sci 147: 816–823, 1969

    Google Scholar 

  5. Rossi CS, Carafoli E, Lehninger AL: Active ion transport by mitochondria. Protoplasma 63: 90–94, 1967

    Article  PubMed  Google Scholar 

  6. Fiskum G, Lehninger AL: Regulated release of Ca2+ from respiring mitochondria by Ca2+/2H+ antiport. J Biol Chem 254: 6236–6239, 1979

    PubMed  Google Scholar 

  7. Crompton M, Kunzi M, Carafoli E: The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Evidence for a sodium-calcium carrier. Eur J Biochem 79: 549–558, 1977

    Article  PubMed  Google Scholar 

  8. McCormack JG, Denton RM: The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J 180: 533–544, 1979

    PubMed  Google Scholar 

  9. Denton RM, Randle PJ, Martin BR: Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128: 161–163. 1972

    PubMed  Google Scholar 

  10. Denton RM, Richards DA, Chin JG: Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem J 176: 899–906, 1978

    PubMed  Google Scholar 

  11. Rosenthal M, Jobsis FF: Intracellular redox changes in functioning cerebral cortex. II. Effects of direct cortical stimulation. J Neurophysiol 34: 750–762, 1971

    PubMed  Google Scholar 

  12. Lipton P: Effects of membrane depolarization on nicotinamide nucleotide fluorescence in brain slices. Biochem J 136: 999–1009, 1973

    PubMed  Google Scholar 

  13. Scott ID, Nicholls DG: Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochem J 186: 21–33, 1980

    PubMed  Google Scholar 

  14. Hansford RG: Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol 102: 1–72, 1985

    PubMed  Google Scholar 

  15. Eng J, Lynch RM, Balaban RS: Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes. Biophys J 55: 621–630, 1989

    PubMed  Google Scholar 

  16. Duchen MR: Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283: 41–50, 1992

    PubMed  Google Scholar 

  17. Pralong WF, Hunyady L, Varnai P, Wollheim CB, Spat A: Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci USA 89: 132–136, 1992

    PubMed  Google Scholar 

  18. Meyer T, Holowka D, Stryer L: Highly cooperative opening of calcium channels by inositol 1,4,5-trisphosphate. Science 240: 653–656, 1988

    PubMed  Google Scholar 

  19. Thayer SA, Miller RJ: Regulation of the intracellular free calcium concentration in single rat dorsal root ganglion neurones in vitro. J Physiol 425: 485–115, 1990

    Google Scholar 

  20. Werth JL, Thayer SA: Mitochondria buffer physiological calcium loads in cultured rat dorsal-root ganglion neurons. J Neurosci 14: 348–356, 1994

    PubMed  Google Scholar 

  21. Nicholls D, Akerman K: Mitochondrial calcium transport. Biochim Biophys Acta 683: 57–88, 1982

    PubMed  Google Scholar 

  22. Pozzan T, Rizzuto R, Volpe P, Meldolesi J: Molecular and cellular physiology of intracellular calcium stores. Physiol Rev 74: 595–636, 1994

    PubMed  Google Scholar 

  23. Carafoli E: Intracellular calcium homeostasis. Ann Rev Biochem 56: 395–433, 1987

    Article  PubMed  Google Scholar 

  24. Rizzuto R, Brini M, Murgia M, Pozzan T: Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262: 744–747, 1993

    Google Scholar 

  25. Rizzuto R, Simpson AW, Brini M, Pozzan T: Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358: 325–327, 1992

    Google Scholar 

  26. Tinel H, Cancela JM, Mogami H, Gerasimenko JV, Gerasimenko OV, Tepikin AV, Petersen OH: Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca(2+) signals. EMBO J 18: 4999–5008, 1999

    Article  PubMed  Google Scholar 

  27. Boitier E, Rea R, Duchen MR: Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol 145: 795–808, 1999

    Article  PubMed  Google Scholar 

  28. Jouaville LS, Ichas F, Mazat JP: Modulation of cell calcium signals by mitochondria. Mol Cell Biochem 184: 371–376, 1998

    PubMed  Google Scholar 

  29. Hajnoczky G, Csordas G, Madesh M, Pacher P: Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals. Cell Calc 28: 349–363, 2000

    Article  Google Scholar 

  30. Montero M, Alonso MT, Albillos A, Garcia-Sancho J, Alvarez J: Mitochondrial Ca2+-induced Ca2+ release mediated by the Ca2+ uniporter. Mol Biol Cell 12: 63–71, 2001

    PubMed  Google Scholar 

  31. Vainio H, Mela L, Chance B: Energy dependent bivalent cation translocation in rat liver mitochondria. Eur J Biochem 12: 387–391, 1970

    Article  PubMed  Google Scholar 

  32. Gunter TE, Pfeiffer DR: Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–C786, 1990

    PubMed  Google Scholar 

  33. Duchen MR, Leyssens A, Crompton M: Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J Cell Biol 142: 975–988, 1998

    Article  PubMed  Google Scholar 

  34. Jacobson J, Duchen MR: Mitochondrial oxidative stress and cell death in astrocytes — requirement for stored Ca(2+) and sustained opening of the permeability transition pore. J Cell Sci 115: 1175–1188, 2002

    PubMed  Google Scholar 

  35. Robb-Gaspers LD, Rutter GA, Burnett P, Hajnoczky G, Denton RM, Thomas AP: Coupling between cytosolic and mitochondrial calcium oscillations: Role in the regulation of hepatic metabolism. Biochim Biophys Acta 1366: 17–32, 1998

    PubMed  Google Scholar 

  36. Gunter TE, Buntinas L, Sparagna G, Eliseev R, Gunter K: Mitochondrial calcium transport: Mechanisms and functions. Cell Calc 28: 285–296, 2000

    Article  Google Scholar 

  37. Litsky ML, Pfeiffer DR: Regulation of the mitochondrial Ca2+ uniporter by external adenine nucleotides: The uniporter behaves like a gated channel which is regulated by nucleotides and divalent cations. Biochemistry 36: 7071–7080, 1997

    Article  PubMed  Google Scholar 

  38. Mironova GD, Baumann M, Kolomytkin O, Krasichkova Z, Berdimuratov A, Sirota T, Virtanen I, Saris NE: Purification of the channel component of the mitochondrial calcium uniporter and its reconstitution into planar lipid bilayers. J Bioenerg Biomembr 26: 231–238, 1994

    Article  PubMed  Google Scholar 

  39. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM: Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J Biol Chem 273: 10223–10231, 1998

    Article  PubMed  Google Scholar 

  40. Billups B, Forsythe ID: Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22: 5840–5847, 2002

    PubMed  Google Scholar 

  41. Sparagna GC, Gunter KK, Sheu SS, Gunter TE: Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270: 27510–27515, 1995

    Article  PubMed  Google Scholar 

  42. Brand MD: The stoichiometry of the exchange catalysed by the mitochondrial calcium/sodium antiporter. Biochem J 229: 161–166, 1985

    PubMed  Google Scholar 

  43. Wingrove DE, Gunter TE: Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. J Biol Chem 261: 15166–15171, 1986

    PubMed  Google Scholar 

  44. Brierley GP, Baysal K, Jung DW: Cation transport systems in mitochondria: Na+ and K+ uniports and exchangers. J Bioenerg Biomembr 26: 519–526, 1994

    Article  PubMed  Google Scholar 

  45. Baysal K, Brierley GP, Novgorodov S, Jung DW: Regulation of the mitochondrial Na+/Ca2+ antiport by matrix pH. Arch Biochem Biophys 291: 383–389, 1991

    Article  PubMed  Google Scholar 

  46. Pfeiffer DR, Gunter TE, Eliseev R, Broekemeier KM, Gunter KK: Release of Ca2+ from mitochondria via the saturable mechanisms and the permeability transition. Iubmb Life 52: 205–212, 2001

    PubMed  Google Scholar 

  47. Gunter KK, Gunter TE: Transport of calcium by mitochondria. J Bioenerg Biomembr 26: 471–485, 1994

    Article  PubMed  Google Scholar 

  48. Bernardi P, Paradisi V, Pozzan P, Azzone GF: Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: Inhibition by ruthenium red. Biochemistry 23: 1645–1651

  49. Bernardi P: Mitochondrial transport of cations: Channels, exchangers, and permeability transition. Physiol Rev 79: 1127–1155, 1984

    Google Scholar 

  50. Nicholls DG: The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176: 463–474, 1978

    PubMed  Google Scholar 

  51. Nicholls DG, Budd SL: Mitochondria and neuronal survival. Physiol Rev 80: 315–360, 2000

    PubMed  Google Scholar 

  52. Nicholls DG, Scott ID: The regulation of brain mitochondrial calciumion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms. Biochem J 186: 833–839, 1980

    PubMed  Google Scholar 

  53. Hunter DR, Haworth RA: The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195: 468–477, 1979

    Article  PubMed  Google Scholar 

  54. Hunter DR, Haworth RA: The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195: 453–459, 1979

    Article  PubMed  Google Scholar 

  55. Haworth RA, Hunter DR: The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195: 460–467, 1979

    Article  PubMed  Google Scholar 

  56. Zoratti M, Szabó I: Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomembr 26: 543–553, 1994

    Article  PubMed  Google Scholar 

  57. Halestrap AP, Kerr PM, Javadov S, Woodfield KY: Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366: 79–94, 1998

    PubMed  Google Scholar 

  58. Le_Quoc K, Le_Quoc D: Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: Importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 265: 249–257, 1988

    Article  PubMed  Google Scholar 

  59. Zoratti M, Szabò I: The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–176, 1995

    PubMed  Google Scholar 

  60. Crompton M, Virji S, JM Ward: Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258: 729–735, 1998

    PubMed  Google Scholar 

  61. Moran O, Sandri G, Panfili E, Stuhmer W, Sorgato MC: Electrophysiological characterization of contact sites in brain mitochondria. J Biol Chem 265: 908–913, 1990

    PubMed  Google Scholar 

  62. Crompton M, Ellinger H, Costi A: Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255: 357–360, 1988

    PubMed  Google Scholar 

  63. Halestrap AP, Davidson AM: Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268: 153–160, 1990

    PubMed  Google Scholar 

  64. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P: Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, a cyclosporin A-sensitive channel. J Biol Chem 271: 2185–2192, 1996

    Article  PubMed  Google Scholar 

  65. Bernardi P: The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta-Bioenerg 1275: 5–9, 1996

    Article  Google Scholar 

  66. Crompton M: Mitochondrial intermembrane junctional complexes and their role in cell death. 529: 11–21, 2000

    Google Scholar 

  67. Leyssens A, Anderson M, Craske M, Ratoghi R, Crompton M, Duchen MR: Transient depolarisations of mitochondria localised to discrete areas of single rat cardiomyocytes caused by free radicals and local calcium release: A model for free radical induced cell injury. J Physiol 487: 123P, 1995

    Google Scholar 

  68. Liu X, Kim CN, Yang J, Jemmerson R, Wang X: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86: 147–157, 1996

    Article  PubMed  Google Scholar 

  69. Ravagnan L, Roumier T, Kroemer G: Mitochondria, the killer organelles and their weapons. J Cell Physiol 192: 131–137, 2002

    Article  PubMed  Google Scholar 

  70. Jacobson J, Duchen MR: 'What nourishes me, destroys me': Towards a new mitochondrial biology. Cell Death Diff 8: 963–966, 2001

    Article  Google Scholar 

  71. Waterhouse NJ, Ricci JE, Green DR: And all of a sudden it's over: Mitochondrial outer-membrane permeabilization in apoptosis. Biochimie 84: 113–121, 2002

    Article  PubMed  Google Scholar 

  72. Shimizu S, Narita M, Tsujimoto Y: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC (see comments). Nature 399: 483–487, 1999

    Article  PubMed  Google Scholar 

  73. Crompton M, Costi A: Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 178: 489–501, 1988

    Article  PubMed  Google Scholar 

  74. Hüser J, Rechenmacher CE, Blatter LA: Imaging the permeability pore transition in single mitochondria. Biophys J 74: 2129–2137, 1998

    PubMed  Google Scholar 

  75. Bossy-Wetzel E, Newmeyer DD, Green DR: Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17: 37–49, 1998

    Article  Google Scholar 

  76. Krohn AJ, Wahlbrink T, Prehn JH: Mitochondrial depolarization is not required for neuronal apoptosis. J Neurosci 19: 7394–7404, 1999

    PubMed  Google Scholar 

  77. Szalai G, Krishnamurthy R, Hajnoczky G: Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J 18: 6349–6361, 1999

    Article  PubMed  Google Scholar 

  78. Altschuld RA, Hohl CM, Castillo LC, Garleb AA, Starling RC, Brierley GP: Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am J Physiol 262: H1699–H1704, 1992

    PubMed  Google Scholar 

  79. Smaili SS, Russell JT: Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors. Cell Calc 26: 121–130, 1999

    Article  Google Scholar 

  80. Ichas F, Jouaville LS, Mazat JP: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89: 1145–1153, 1997

    Article  PubMed  Google Scholar 

  81. Bernardi P, Petronilli V: The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal. J Bioenerg Biomembr 28: 131–138, 1996

    Article  PubMed  Google Scholar 

  82. Crompton M: The mitochondrial permeability transition pore and its role in cell death. Biochem J 341: 233–249, 1999

    Article  PubMed  Google Scholar 

  83. Chance B, Sies H, Boveris A: Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527–605, 1979

    PubMed  Google Scholar 

  84. Turrens JF, Alexandre A, Lehninger AL: Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys 237: 408–414, ??year??

  85. Herrero A, Barja G: ADP-regulation of mitochondrial free radical production is different with complex I-or complex II-linked substrates: Implications for the exercise paradox and brain hypermetabolism. J Bioenerg Biomembr 29: 241–249, 1985

    Article  Google Scholar 

  86. Packer MA, Scarlett JL, Martin SW, Murphy MP: Induction of the mitochondrial permeability transition by peroxynitrite. Biochem Soc Trans 25: 909–914, 1997

    PubMed  Google Scholar 

  87. Packer MA, Murphy MP: Peroxynitrite causes calcium efflux from mitochondria which is prevented by cyclosporine-A. FEBS Lett 345: 237–240, 1994

    Article  PubMed  Google Scholar 

  88. Abramson JJ, Salama G: Sulfhydryl oxidation and Ca2+ release from sarcoplasmic-reticulum. Mol Cell Biochem 82: 81–84, 1988

    Article  PubMed  Google Scholar 

  89. Suzuki YJ, Ford GD: Redox regulation of signal transduction in cardiac and smooth muscle. J Mol Cell Cardiol 31: 345–353, 1999

    Article  PubMed  Google Scholar 

  90. Bunting JR: A test of the singlet oxygen mechanism of cationic dye photosensitization of mitochondrial damage. Photochem Photobiol 55: 81–87, 1992

    PubMed  Google Scholar 

  91. Jacobson D, Duchen MR: Fluorescence imaging of the mitochondrial permeability transition in rat cortical astrocytes in culture. J Physiol 506: 75P

  92. Buckman JF, Reynolds IJ: Spontaneous changes in mitochondrial membrane potential in cultured neurons. J Neurosci 21: 5054–5065, 1998

    Google Scholar 

  93. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T: Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280: 1763–1766, 1998

    Article  PubMed  Google Scholar 

  94. Csordas G, Thomas AP, Hajnoczky G: Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18: 96–108, 1999

    Article  PubMed  Google Scholar 

  95. Ramesh V, Sharma VK, Sheu SS, Franzini-Armstrong C: Structural proximity of mitochondria to calcium release units in rat ventricular myocardium may suggest a role in Ca2+ sequestration. Ann NY Acad Sci 853: 341–344, 1998

    PubMed  Google Scholar 

  96. Kowaltowski AJ, Castilho RF, Grijalba MT, Bechara EJ, Vercesi AE: Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation. J Biol Chem 271: 2929–2934, 1996

    Article  PubMed  Google Scholar 

  97. Dykens JA: Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. J Neurochem 63: 584–591, 1994

    PubMed  Google Scholar 

  98. Votyakova TV, Reynolds IJ: DeltaPsi(m)-dependent and-independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79: 266–277, 2001

    Article  PubMed  Google Scholar 

  99. Skulachev VP: How proapoptotic proteins can escape from mitochondria? (Comment to Dr. D.W. Voehringer's paper, Free Radic Biol Med 27: 945–950, 1999). Free Radic Biol Med 29: 1056–1058, 2000

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, J., Duchen, M.R. Interplay between mitochondria and cellular calcium signalling. Mol Cell Biochem 256, 209–218 (2004). https://doi.org/10.1023/B:MCBI.0000009869.29827.df

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009869.29827.df

Navigation