Skip to main content
Log in

Molecular Analysis of Structural Abnormalities in Papillary Thyroid Carcinoma Genome

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Rearrangements of the protooncogene RET (RET/PTC) and somatic mutations of the gene BRAF are the most common events in the etiopathogenesis of papillary thyroid carcinoma (PTC). The rates of RET/PTC rearrangements and BRAF mutations in different nodular formations of the thyroid gland (TG) have been estimated. Comparative expression analysis of the extracellular (EC) and tyrosine kinase (TK) domains of RET has shown that 14% (12 out of 85) of PTC cases are RET/PTC-positive, including one ΔRFP/RET-, two RET/PTC3-, and seven RET/PTC1-positive tumors, as well as two unidentified chimeric RET/PTC oncogenes. The standard T1796A transversion in the gene BRAF has been found in 60% (55 out of 91) PTC cases with the use of amplification refractory mutation system–polymerase chain reaction (ARMS–PCR). Somatic mutation G1753A and deletion del1800_1811 have been identified in PTC for the first time. The absence of the BRAF mutations in RET/PTC-positive tumors allows these two genetic defects to be regarded as alternative mechanisms of the RAS–RAF–MEK–ERK mitogen-activated protein (MAP) kinase cascade activation in PTCs. In none of the three follicular thyroid carcinomas (FTCs), 11 follicular thyroid adenomas (FTAs), and 13 nodular goiters have either BRAF mutations or RET/PTC rearrangements been found. Thus, the RET/PTC chimeric oncogenes and BRAF somatic mutations are specific markers of PTC and can be used for the preoperative diagnosis of these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Robbins J. 1991. Thyroid cancer, a lethal endocrine neoplasm. Ann. Intern. Med. 115, 133–147.

    Google Scholar 

  2. Farid N.R., Shi Y., Zou M. 1994. Molecular basis of thyroid cancer. Endocr. Rev. 15, 202–232.

    Google Scholar 

  3. Learoyd D.L., Messina M., Zedenius J., Robinson B.G. 2000. Molecular genetics of thyroid tumors and surgical decision-making. World J. Surg. 24, 923–933.

    Google Scholar 

  4. Goretzki P.E., Dotzenrath C., Simon D., Roher H.-D. 1999. Studies of oncogenes and tumor-suppressor genes in human thyroid carcinomas, and their clinical implications. Langenbeck's Arch. Surg. 384, 1–8.

    Google Scholar 

  5. Sarlis N.J. 2000. Expression patterns of cellular growthcontrolling genes in non-medullary thyroid cancer: Basic aspects. Rev. Endocr. Metab. Disorders. 1, 183-196.

    Google Scholar 

  6. Komminoth P. 1997. The RET proto-oncogene in medullary and papillary thyroid carcinoma. Virchows Arch. 431, 1–9.

    Google Scholar 

  7. Nakamura T., Ishizaka Y., Nagao M., Ishikawa T. 1994. Expression of the ret proto-oncogene product in human normal and neoplastic tissues of neural crest origin.J. Pathol. 172, 255–260.

    Google Scholar 

  8. Baloh R.H., Enomoto H., Johnson E.M., Milbrandt J. 2000.The GDNF family ligands and receptors: Implications for neural development. Curr. Opin. Neurobiol. 10, 103–110.

    Google Scholar 

  9. Eng C. 1999. RET proto-oncogene in the development of human cancer.J. Clin. Oncol. 17, 380–393.

    Google Scholar 

  10. Grieco M., Santoro M., Berlingieri M.T., Melillo R.M., Donghi R., Bongarzone I., Pierotti M.A., Dell Porta G., Fusco A., Vecchio G. 1990. PTC is a novel rearranged form of ret proto-oncogene and frequently detected in vivo in human thyroid papillary carcinomas. Cell. 60, 557–563.

    Google Scholar 

  11. Santoro M., Carlomagno F., Hay I.D., Herrmann M.A., Grieco M., Melillo R., Pierotti M.A., Bongarzone I., Della Porta G., Berger N., Peix, J.L., Paulin C., Fabien N., Vecchio G., Jenkins R.B., Fusco A. 1992. RET oncogene activation in thyroid neoplasms is restricted to the papillary cancer subtype. J. Clin. Invest.89, 1517–1522.

    Google Scholar 

  12. Tallini G., Asa S.L. 2001. RET oncogene activation in papillary thyroid carcinoma.Adv. Anat. Pathol.8, 345-354.

    Google Scholar 

  13. Pierotti M.A., Santoro M., Jenkins R.B., Sozzi G., Bongarzone I., Grieco M., Monzini N., Miozzo M., Herrmann M.A., Fusco A., Hay I.D., Della Porta G., Vecchio G. 1992. Characterization of an inversion on the long arm of chromosome 10 juxtaposes D10S170 and ret and creating the oncogenic sequence Ret/PTC. Proc.Natl. Acad. Sci. USA. 89, 1616–1620.

    Google Scholar 

  14. Bongarzone I., Butti M.G., Coronelli S., Borrello M.G., Santoro M., Mondellini P., Pilotti S., Fusco A., Della Porta G., Pierotti M.A. 1994. Frequent activation of ret protooncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res.54, 2979-2985.

    Google Scholar 

  15. Bongarzone I., Monzini N., Borrello M.G., Carcano C., Ferraresi G., Arighi E., Mondellini P., Della Porta G., Pierotti M.A. 1993. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of Ret tyrosine kinase and the regulatory subunit RI a of cyclic AMP-dependent protein kinase A.Mol. Cell Biol. 13, 358–366. _

    Google Scholar 

  16. Tuttle R.M., Becker D.V. 2000. The Chernobyl and its consequences: Update at the millennium. Semin. Nucl.Med. 30, 133–140.

    Google Scholar 

  17. Greco A., Pierotti M.A., Bongarzone I., Pagliardini S., Lanzi C., Della Porta G. 1992. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene. 7, 237-242.

    Google Scholar 

  18. Greco A., Mariani C., Miranda C., Lupas A., Pagliardini S., Pomati M., Pierotti M.A. 1995. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol. Cell. Biol. 15, 6118–6127.

    Google Scholar 

  19. Pearson G., Robinson F., Gibson T.B., Xu B.-E., Karandikar M., Berman K., Cobb M.H. 2001. Mitogenactivated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr. Rev. 22, 153–183.

    Google Scholar 

  20. Suarez H.G., du Villard J.A., Severino M., Caillou B., Schlumberger M., Tubiana M., Parmentier C., Monier R. 1990. Presence of mutations of all three ras genes in human thyroid tumors. Oncogene.5, 565–570.

    Google Scholar 

  21. Karga H., Lee J.-K., Vickery A.L., Thor A., Gaz R.D., Jameson J.L. 1991. Ras oncogene mutations in benign and malignant thyroid tumors. J. Clin. Endocr. Metab. 73, 832–836.

    Google Scholar 

  22. Rapp U.R., Goldsborough M.D., Mark G.E., Bonner T.I., Groffen J., Reynolds Jr. F.H., Stephenson J.R. 1983. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc.Natl. Acad. Sci. USA. 80, 4218–4222.

    Google Scholar 

  23. Jansen H.W., Lurz R., Bister K., Bonner T.I., Mark G.E., Rapp U.R. 1984. Homologous cell-derived oncogenes in avian carcinoma virus MH2 and murine sarcoma virus 3611. Nature. 307, 281–284.

    Google Scholar 

  24. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J., Hargrave D., Pritchard-Jones K., Maitland N., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A., Nicholson A., Ho J.W., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A. 2002. Mutations of the BRAF gene in human cancer. Nature. 417, 949–954.

    Google Scholar 

  25. Tannapfel A., Sommerer F., Benicke M., Katalinic A., Uhlmann D., Witzigmann H., Hauss J., Wittekind C. 2003. Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut. 52, 706-712.

    Google Scholar 

  26. Soares P., Trovisco V., Rocha A.S., Lima J., Castro P., Preto A., Maximo V., Botelho., Seruca R., Sobrinho-Sim es M. 2003. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 22, 4578–4580.

    Google Scholar 

  27. Kimura E.T., Nikiforova M.N., Zhu Z., Knauf J.A., Nikiforov Y.E., Fagin J.A. 2003. High prevalence of BRAF mutations in thyroid cancer. Genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.Cancer Res. 63, 1454–1457.

    Google Scholar 

  28. Xu X., Quiros R.M., Gattuso P., Ain K.B., Prinz R.A. 2003. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res. 63, 4561–4567.

    Google Scholar 

  29. Cohen Y., Xing M., Mambo E., Guo Z., Wu G., Trink B., Beller U., Westra W.H., Ladenson P.W., Sidransky D. 2003. BRAF mutation in papillary thyroid carcinoma. J. Natl. Cancer Inst. 95, 625–627.

    Google Scholar 

  30. Namba H., Nakashima M., Hayashi T., Hayashida N., Maeda S., Rogounovitch T.I., Ohtsuru A., Saenko V.A., Kanematsu T., Yamashita S. 2003.Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocr. Metab. 88, 4393–4397.

    Google Scholar 

  31. Fukushima T., Suzuki S., Mashiko M., Ohtake T., Endo Y., Takebayashi Y., Sekikawa K., Hagiwara K., Takenoshita S. 2003. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 22, 6455–6457.

    Google Scholar 

  32. Nikiforova M.N., Kimura E.T., Gandhi M., Biddinger P.W., Knauf J.A., Basolo F., Zhu Z., Giannini R., Salvatore G., Fusco A., Santoro M., Fagin J.A., Nikiforov Y.E. 2003. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 88, 5399–5404.

    Google Scholar 

  33. Landegren U. 1996. Laboratory Protocols for Mutation Detection. Oxford: Oxford Univ. Press.

    Google Scholar 

  34. Smanik P.A., Furminger T.L., Mazzaferri E.L., Jhiang S.M. 1995. Breakpoint characterization of the ret/PTC oncogene in human papillary thyroid carcinoma. Hum. Mol.Genet. 4, 2313–2318.

    Google Scholar 

  35. Bunone G., Uggeri M., Mondellini P., Pierotti M.A., Bongarzone I. 2000. RET receptor expression in thyroid follicular epithelial cell-derived tumors. Cancer Res. 60, 2845–2849.

    Google Scholar 

  36. Saenko V., Rogounovitch T., Shimizu-Yoshida Y., Abrosimov A., Lushnikov E., Roumiantsev P., Matsumoto N., Nakashima M., Meirmanov S., Ohtsuru A., Namba H., Tsyb A., Yamashita S. 2003. Novel tumorigenic rearrangement, delta rfp/ret, in a papillary thyroid carcinoma from externally irradiated patient. Mutat. Res. 527, 81-90.

    Google Scholar 

  37. Takahashi M., Ritz J., Cooper G.M. 1985. Activation of a novel human transforming gene, ret, by DNA rearrangement.Cell.42, 581–588.

    Google Scholar 

  38. Nikiforov Y.E., Rowland J.M., Bove K.E., Monforte-Munoz H., Fagin J.A. 1997. Distinct pattern of ret oncogene rearrangement in morphological variants of radiation-induced and sporadic thyroid papillary thyroid carcinomas in children. Cancer Res. 57, 1690–1694.

    Google Scholar 

  39. Bongarzone I., Vigneri P., Mariani L., Collini P., Pilotti S., Pierotti M.A. 1998. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: Correlation with clinopathological features. Clin. Cancer Res. 4, 223–228.

    Google Scholar 

  40. Thomas G.A., Bunnell H., Cook H.A., Williams E.D., Nerovnya A., Cherstvoy E.D., Tronko N.D., Bogdanova T.I., Chiappetta G., Viglietto G., Pentimalli F., Salvatore G., Fusco A., Santoro M., Vecchio G. 1999.High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-Chernobyl thyroid papillary carcinomas: A strong correlation between RET/PTC3 and the solid-follicular variant.J. Clin. Endocr. Metab. 84, 4232–4238.

    Google Scholar 

  41. Cinti R., Yin L., Ilc K., Berger N., Basolo F., Cuccato S., Giannini R., Torre G., Miccoli P., Amati P., Romeo G., Corvi R.2000.RET rearrangements in papillary thyroid carcinomas and adenomas detected by interphase FISH.Cytogenet. Cell Genet.88, 56–61.

    Google Scholar 

  42. Ishizaka Y., Kobayashi S., Ushijima T., Hirohashi S., Sugimura T., Nagao M. 1991. Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene. 6, 1667–1672.

    Google Scholar 

  43. Sugg S.L., Ezzat S., Rosen I.B., Freeman J.L., Asa S.L. 1998. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J. Clin.Endocr. Metab. 83, 4116–4122.

    Google Scholar 

  44. Viglietto G., Chiappetta G., Martinez-Tello F.J., Fukunaga F.H., Tallini G., Rigopoulou D., Visconti R., Mastro A., Santoro M., Fusco A. 1995. RET/PTC oncogene activation is an early event in thyroid carcinogenesis.Oncogene. 11, 1207–1210.

    Google Scholar 

  45. Corvi R., Martinez-Alfaro M., Harach H.R., Zini M., Papotti M., Romeo G. 2001. Frequent RET rearrangements in thyroid papillary microcarcinoma detected by interphase fluorescence in situ hybridization. Lab.Invest.81, 1639–1645.

    Google Scholar 

  46. Harach H.R., Franssila K.O., Wasenius V.M. 1985.Occult papillary carcinoma of the thyroid. A "normal" finding in Finland. A systematic autopsy study. Cancer. 56, 531–538.

    Google Scholar 

  47. Newton C.R., Graham A., Heptinstall L.E., Powell S.J., Summers C., Kalsheker N., Smith J.C., Markham A.F. 1989. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS).Nucleic Acids Res.17, 2503–2516.

    Google Scholar 

  48. Mercer K.E., Pritchard C.A. 2003. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim.Biophys. Acta. 1653, 25–40.

    Google Scholar 

  49. Marais R., Light Y., Paterson H.F., Mason C.S., Marshall C.J. 1997.Differential regulation of Raf-1, ARaf and B-Raf by oncogenic Ras and tyrosine kinases.J. Biol. Chem. 272, 4378–4383.

    Google Scholar 

  50. Pollock P.M., Harper U.L., Hansen K.S., Yudt L.M., Stark M., Robbins C.M., Moses T.Y., Hostetter G., Wagner U., Kakareka J., Salem G., Pohida T., Heenan P., Duray P., Kallioniemi O., Hayward N.K., Trent J.M., Meltzer P.S. 2003. High frequency of BRAF mutations in nevi. Nature Genet. 33, 19–20.

    Google Scholar 

  51. Flores J.F., Walker G.J., Glendening J.M., Haluska F.G., Castresana J.S., Rubio M.P., Pastorfide G.C., Boyer L.A., Kao W.H., Bulyk M.L., Barnhill R.L., Hayward N.K., Housman D.E., Fountain J.W. 1996.Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res. 56, 5023–5032.

    Google Scholar 

  52. Kumar R., Sauroja I., Punnonen K., Jansen C., Hemminki K. 1998. Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines. Genes Chromosomes Cancer.23,273–277.

    Google Scholar 

  53. Zuo L., Weger J., Yang Q., Goldstein A.M., Tucker M.A., Walker G.J., Hayward N., Dracopoli N.C. 1996. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Genet. 12, 97–99.

    Google Scholar 

  54. Lackey K., Cory M., Davis R., Frye S.V., Harris P.A., Hunter R.N., Jung D.K., McDonald O.B., McNutt R.W., Peel M.R., Rutkowske R.D., Veal J.M., Wood E.R. 2000.The discovery of potent cRaf1 kinase inhibitors. Bioorg.Med. Chem. Lett. 10, 223–226.

    Google Scholar 

  55. Kolch W. 2002. Ras/Raf signalling and emerging pharmacotherapeutic targets. Expert. Opin. Pharmacother. 3, 709–718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil'ev, E.V., Roumiantsev, P.O., Saenko, V.A. et al. Molecular Analysis of Structural Abnormalities in Papillary Thyroid Carcinoma Genome. Molecular Biology 38, 538–548 (2004). https://doi.org/10.1023/B:MBIL.0000037006.90193.f6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MBIL.0000037006.90193.f6

Navigation