Skip to main content
Log in

Integrated Population Pharmacokinetic Model of Both Cyclophosphamide and Thiotepa Suggesting a Mutual Drug–Drug Interaction

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Purpose/aims: Cyclophosphamide (CP) and thiotepa (TT) are frequently administered simultaneously in high-dose chemotherapy regimens. The prodrug CP shows strong autoinduction resulting in increased formation of its activated metabolite 4-hydroxycyclophosphamide (4OHCP). TT inhibits this bioactivation of CP. Previously, we successfully modelled CP bioactivation and the effect of TT on the autoinduction. Recently we suggested that CP may also induce the conversion of TT in to its metabolite tepa (T). The aim of the current study was to investigate whether the influence of CP on TT metabolism can be described with a population pharmacokinetic model and whether this interaction can be incorporated in an integrated model describing both CP and TT pharmacokinetics. Methods: Plasma samples were collected from 49 patients receiving 86 courses of a combination of high-dose CP (4000 or 6000 mg/m2), TT (320 or 480 mg/m2) and carboplatin (1067 or 1600 mg/m2) given in short infusions during four consecutive days. For each patient, approximately 20 plasma samples were available per course. Concentrations of CP, 4OHCP, TT and T were determined using GC and HPLC. Kinetic data were processed using NONMEM.Results: The pharmacokinetics of TT and T were described with a two-compartment model. TT was eliminated through a non-inducible and an inducible pathway, the latter resulting in formation of T (ClindTT = 12.4 l/hr, ClnonindTT = 17.0 l/hr). Induction of TT metabolism was mediated by a hypothetical amount of enzyme, different from that involved in CP induction, whose amount increased with time in the presence of CP. The amount of enzyme followed a zero-order formation and a decrease with a first-order elimination rate constant of 0.0343 hr−1 (t1/2 = 20 hr). This model was significantly better than a model lacking the induction by CP. The model was successfully incorporated into the previously published pharmacokinetic model for CP, and resulted in comparable parameter estimates for this compound and its metabolite 4OHCP.Conclusion: The pharmacokinetics of TT, when administered in combination with CP, were successfully described. The model confirms induction of TT metabolism with time and it appears likely that CP is responsible for this phenomenon. The existence of a mutual pharmacokinetic interaction between CP and TT, as described in our integrated model, may be relevant in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. van der Wall, J. H. Beijnen, and S. Rodenhuis. High-dose chemotherapy for solid tumors. Cancer Treat. Rev. 21:105-132 (1995).

    Google Scholar 

  2. E. A. Stadtmauer, A. O'Neill, L. J. Goldstein, P. A. Crilley, K. F. Mangan, J. N. Ingle, I. Brodsky, S. Martino, H. M. Lazarus, J. K. Erban, C. Sickles, and J. H. Glick. Conventional-dose chemotherapy compared with high-dose chemotherapy plus autologous hematopoietic stem-cell transplantation for metastatic breast cancer. Philadelphia Bone Marrow Transplant Group. New Engl. J. Med. 342:1069-1076 (2000).

    Google Scholar 

  3. J. P. Eder, A. Elias, T. C. Shea, S. M. Schryber, B. A. Teicher, M. Hunt, J. Burke, R. Siegel, L. E. Schnipper, and E. FreiIII. A phase I/II study of cyclophosphamide, thiotepa, and carboplatin with autologous bone marrow transplantation in solid tumor patients. J. Clin. Oncol. 8:1239-1245 (1990).

    Google Scholar 

  4. S. Rodenhuis, M. Bontenbal, L. V. Beex, J. Wagstaff, D. J. Richel, M. A. Nooij, E. E. Voest, P. Hupperets, H. van Tinteren, H. L. Peterse, E. M. TenVergert, and E. G. de Vries. High-dose chemotherapy with hematopoietic stem-cell rescue for high-risk breast cancer. New Engl. J. Med. 349:7-16 (2003).

    Google Scholar 

  5. S. Rodenhuis, D. J. Richel, E. van der Wall, J. H. Schornagel, J. W. Baars, C. C. Koning, J. L. Peterse, J. H. Borger, W. J. Nooijen, R. Bakx, O. Dalesio, and E. Rutgers. Randomised trial of high-dose chemotherapy and haemopoietic progenitor-cell support in operable breast cancer with extensive axillary lymph-node involvement. Lancet 352:515-521 (1998).

    Google Scholar 

  6. S. Rodenhuis, A. Westerman, M. J. Holtkamp, W. J. Nooijen, J. W. Baars, E. van der Wall, I. C. Slaper-Cortenbach, and J. H. Schornagel. Feasibility of multiple courses of high-dose cyclophosphamide, thiotepa, and carboplatin for breast cancer or germ cell cancer. J. Clin. Oncol. 14:1473-1483 (1996).

    Google Scholar 

  7. S. Rodenhuis, R. de Wit, P. H. M. de Mulder, H. J. Keizer, D. T. Sleijfer, R. I. Lalisang, P. J. Bakker, I. Mandjes, M. Kooi, and E. G. de Vries. A multi-center prospective phase II study of high-dose chemotherapy in germ-cell cancer patients relapsing from complete remission. Ann. Oncol. 10:1467-1473 (1999).

    Google Scholar 

  8. J. G. Schrama, J. W. Baars, M. J. Holtkamp, J. H. Schornagel, J. H. Beijnen, and S. Rodenhuis. Phase II study of a multi-course high-dose chemotherapy regimen incorporating cyclophosphamide, thiotepa, and carboplatin in stage IV breast cancer. Bone Marrow Transplant. 28:173-180 (2001).

    Google Scholar 

  9. M. J. Moore. Clinical Pharmacokinetics of cyclophosphamide. Clin. Pharmacokinet. 20:194-208 (1991).

    Google Scholar 

  10. T. K. H. Chang, L. Yu, P. Maurel, and D. J. Waxman. Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines. Cancer Res. 57:1946-1954 (1997).

    Google Scholar 

  11. N. E. Sladek, D. Doeden, J. F. Powers, and W. Krivit. Plasma concentrations of 4-hydroxycyclophosphamide and phosphoramide mustard in patients repeatedly given high doses of cyclophosphamide in preparation for bone marrow transplantation. Cancer Treat. Rep. 68:1247-1254 (1984).

    Google Scholar 

  12. S. Ren, T. F. Kalhorn, G. B. McDonald, C. Anasetti, F. R. Appelbaum, and J. T. Slattery. Tharmacokinetics of cyclophosphamide and its metabolites in bone marrow transplantation patients. Clin. Pharmacol. Ther. 64:289-301 (1998).

    Google Scholar 

  13. D. Busse, F. W. Busch, E. Schweizer, F. Bohnenstengel, M. Eichelbaum, P. Fischer, K. Schumacher, W. E. Aulitzky, and H. K. Kroemer. Fractionated administration of high-dose cyclophosphamide: influence on dose-dependent changes in pharmacokinetics and metabolism. Cancer Chemother. Pharmacol. 43:263-268 (1999).

    Google Scholar 

  14. M. J. Moore, R. W. Hardy, J. J. Thiessen, S. J. Soldin, and C. Erlichman.Rapid development of enhanced clearance after high-dose cyclophosphamide. Clin. Pharmacol. Ther. 44:622-628 (1988).

    Google Scholar 

  15. M. Hassan, U. S. H. Svensson, P. Ljungman, B. Bjorkstrand, H. Olsson, M. Bielenstein, M. Abdel-Rehim, C. Nilsson, M. Johansson, and M. O. Karlsson. A mechanism-based pharmacokinetic-enzyme model for cyclophosphamide autoinduction in breast cancer patients. J. Clin. Pharmacol. 48:669-677 (1999).

    Google Scholar 

  16. A. D. R. Huitema, R. A. A. MathÔt, M. M. Tibben, S. Rodenhuis, and J. H. Beijnen. A mechanism-based pharmacokinetic model for the cytochrome P450 drug-drug interaction between cyclophosphamide and thioTEPA and the autoinduction of cyclophosphamide. J. Pharmacokinet. Pharmacodyn. 28:211-230 (2001).

    Google Scholar 

  17. T. L. Chen, J. L. Passos-Coelho, D. A. Noe, M. J. Kennedy, K. C. Black, O. M. Colvin, and L. B. Grochow. Nonlinear pharmacokinetics of cyclophosphamide in patients with metastatic breast cancer receiving high-dose chemotherapy followed by autologous bone marrow transplantation. Cancer Res. 55:810-816 (1995).

    Google Scholar 

  18. L. W. Anderson, T. L. Chen, O. M. Colvin, L. B. Grochow, J. M. Collins, M. J. Kennedy, and J. M. Strong. Cyclophosphamide and 4-hydroxycyclophosphamide/aldophosphamide kinetics in patients receiving high-dose cyclophosphamide chemotherapy. Clin. Cancer Res. 2:1481-1487 (1996).

    Google Scholar 

  19. A. D. R. Huitema, T. Kerbusch, M. M. Tibben, S. Rodenhuis, and J. H. Beijnen. Reduction of cyclophosphamide-bioactivation by thiotepa: critical sequence-dependency in high-dose chemotherapy regimens. Cancer Chemother. Pharmacol. 46:119-127 (2000).

    Google Scholar 

  20. J. M. Rae, N. V. Soukhova, D. A. Flockhart, and Z. Desta. Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism. Drug Metab. Dispos. 30:525-530 (2002).

    Google Scholar 

  21. B. E. Cohen, M. J. Egorin, E. A. Kohlhepp, J. Aisner, and P. L. Gutierrez. Human plasma pharmacokinetics and urinary excretion of thiotepa and its metabolites. Cancer Treat. Rep. 70:859-864 (1986).

    Google Scholar 

  22. B. A. Teicher, D. J. Waxman, S. A. Holden, Y. Y. Wang, L. Clarke, E. Alvarez Sotomayor, S. M. Jones, and E. FreiIII. Evidence for enzymatic activation and oxygen involvement in cytotoxicity and anti-tumor activity of N,N′,N′′-Triethylenethiophosphoramide. Cancer Res. 49:4996-5001 (1989).

    Google Scholar 

  23. B. Hagen, O. Dale, G. Neverdal, S. Azri, and O. G. Nilsen. Metabolism and alkylating activity of thiotepa in rat liver slice incubation. Cancer Chemother. Pharmacol. 28:441-447 (1991).

    Google Scholar 

  24. P. A. Jacobson, K. Green, A. Birnbaum, and R. P. Remmel. Cytochrome P450 isozymes 3A4 and 2B6 are involved in the in vitro human metabolism of thiotepa to tepa. Cancer Chemother. Pharmacol. 49:461-467 (2002).

    Google Scholar 

  25. S. Ng and D. J. Waxman.N,N′,N′′-Triethylenethiophosphoramide (Thio-TEPA) oxygination by constitutive hepatic p450 enzymes and modulation of drug metabolism and clearance in vivo by p450-inducing agents. Cancer Res. 51:2340-2345 (1991).

    Google Scholar 

  26. S. Ng and D. J. Waxman.Biotransformation of N,N′,N′′-Triethylenethiophosphoramide: oxidative desulfuration to yield N,N′,N′′-Triethylenephosphoramide associated with suicide inactivation of a phenobarbital-inducable hepatic p-450 monooxygenase. Cancer Res. 50:464-471 (1990).

    Google Scholar 

  27. S. F. Ng and D. J. Waxman. Activation of thiotepa cytotoxicity toward human breast cancer cells by hepatic cytochrome P450. Int. J. Oncol. 2:731-738 (1993).

    Google Scholar 

  28. B. Miller, T. Tenenholz, M. J. Egorin, G. Sosnovsky, N. U. Rao, and P. L. Gutierrez. Cellular pharmacology of N,N′,N′′-Triethylenethiophosphoramide. Cancer Lett. 41:157-168 (1988).

    Google Scholar 

  29. T. K. H. Chang, G. Chen, and D. J. Waxman. Modulation of thioTEPA anti-tumor activity in vivo by alteration of liver cytochrome P450-catalyzed drug-metabolism. J.'Pharmacol. Exp. Ther. 274:270-275 (1995).

    Google Scholar 

  30. D. E. Cole, G. Johnson, and R. L. Tartaglia. Correlation between plasma pharmacokinetics and in vitro cytotoxicity of thiotepa (tt) and tepa (tp). Proc. American Ass. Clin. Oncol. 8:72(1989).

    Google Scholar 

  31. R. L. Heideman, D. E. Cole, F. Balis, J. Sato, G. H. Reaman, R. J. Packer, L. J. Singher, L. J. Ettinger, A. Gillespie, and J. Sam. Phase I and pharmacokinetic evaluation of thiotepa in the cerebrospinal fluid and plasma of pediatric patients: evidence for dose-dependent plasma clearance of thiotepa. Cancer Res. 49:736-741 (1989).

    Google Scholar 

  32. B. Hagen, G. Neverdal, R. A. Walstad, and O. G. Nilsen. Long-term pharmacokinetics of thio-tepa, tepa and total alkylating activity following i.v. bolus administration of thio-tepa in ovarian cancer patients. Cancer Chemother. Pharmacol. 25:257-262 (1990).

    Google Scholar 

  33. A. D. R. Huitema, R. A. A. MathÔt, M. M. Tibben, J. H. M. Schellens, S. Rodenhuis, and J. H. Beijnen. Population pharmacokinetics of thiotepa and its active metabolite tepa in high-dose chemotherapy. Br. J. Clin. Pharmacol. 52:61-70 (2001).

    Google Scholar 

  34. W. D. Henner, T. C. Shea, E. A. Furlong, M. D. Flaherty, J. P. Eder, A. Elias, C. Begg, and K. Antman. Pharmacokinetics of continuous-infusion high-dose thiotepa. Cancer Treat. Rep. 71:1043-1047 (1987).

    Google Scholar 

  35. A. Fossari. Klinisch-pharmackokinetische Untersuchungen zur Chemotherapie mit Hochdosis-Thiotepa bei Hochrisiko-Mammakarzinom. Dissertation. Heinrich-Heine-Universität Düsseldorf (1999).

  36. A. M. Hussein, W. P. Petros, M. Ross, J. J. Vredenburgh, M. L. Affrontil, R. B. Jones, E. J. Shpall, P. Rubin, M. Elkordy, C. Gilbert, C. Gupton, M. J. Egorin, J. Soper, A. Berchuck, D. Clarke-Person, D. A. Berry, and W. P. Peters. A phase I/II study of high-dose cyclophosphamide, cisplatin, and thiotepa followed by autologous bone marrow and granulocyte colony-stimulating factor-primed peripheral-blood progenitor cells in patients with advanced malignancies. Cancer Chemother. Pharmacol. 37:561-568 (1996).

    Google Scholar 

  37. B. Hagen, F. Walseth, R. A. Walstad, T. Iversen, and O. G. Nilsen. Single and repeated dose pharmacokinetics of thiotepa in patients treated for ovarian carcinoma. Cancer Chemother. Pharmacol. 19:143-148 (1987).

    Google Scholar 

  38. A. D. R. Huitema, M. M. Tibben, T. Kerbusch, J. H. Zwikker, S. Rodenhuis, and J. H. Beijnen.Simultaneous determination of N,N′,N′′-triethylenethiophosphoramide, cyclophosphamide and some of their metabolites in plasma using capillary gas chromatography. J. Chromatogr. B. Biomed. Sci. Appl. 716:177-186 (1998).

    Google Scholar 

  39. A. D. R. Huitema, M. M. Tibben, T. Kerbusch, J. J. Kettenes-Van Den Bosch, S. Rodenhuis, and J. H. Beijnen. High performance liquid chromatographic determination of the stabilized cyclophosphamide metabolite 4-hydroxycyclophosphamide in plasma and red blood cells. J. Liq. Chrom. Rel. Technol. 23:1725-1744 (2000).

    Google Scholar 

  40. S. L. Beal and L. B. Sheiner.User's Guides, NONMEM Project Group University of California at San Francisco, San Francisco, CA 1998.

    Google Scholar 

  41. B. Hagen. Pharmacokinetics of thiotepa and tepa in the conventional dose-range and its correlation to myelosuppressive effects. Cancer Chemother. Pharmacol. 27:373-378 (1991).

    Google Scholar 

  42. P. J. O'Dwyer, F. LaCreta, P. F. Engstrom, R. Peter, L. Tartaglia, D. Cole, S. Litwin, J. DeVito, D. Poplack, and R. J. DeLap. Phase I/pharmacokinetic reevaluation of thiotepa. Cancer Res. 51:3171-3176 (1991).

    Google Scholar 

  43. P. J. O'Dwyer, F. P. LaCreta, R. Schilder, S. Nash, C. McAleer, L. L. Miller, G. R. Hudes, and R. F. Ozols. Phase I trial of thiotepa in combination with recombinant human granulocyte-macrophage colony-stimulating factor. J. Clin. Oncol. 10:1352-1358 (1992).

    Google Scholar 

  44. J. R. Geyer, F. M. Balis, M. D. Krailo, R. Heideman, E. Broxson, J. K. Sato, D. Poplack, and W. A. Bleyer. A phase II study of thiotepa in children with recurrent solid tumor malignancies: a children's cancer study. Invest. New Drugs 13:337-342 (1996).

    Google Scholar 

  45. M. Kletzel, G. L. Kearns, T. G. Wells, and H. C. Thompson. Pharmacokinetics of high dose thiotepa in children undergoing autologous bone marrow transplantation. Bone Marrow Transplant 10:171-175 (1992).

    Google Scholar 

  46. H. M. Lazarus, M. D. Reed, T. R. Spitzer, M. S. Rabaa, and J. L. Blumer. High-dose iv thiotepa and cryopreserved autoplogous bone marrow transplantation for therapy of refractory cancer. Cancer Treat. Rep. 71:689-695 (1987).

    Google Scholar 

  47. B. Hagen, R. A. Walstad, and O. G. Nilsen. Pharmacokinetics of thiotepa at two different doses. Cancer Chemother. Pharmacol. 22:356-358 (1988).

    Google Scholar 

  48. L. Gervot, B. Rochat, J. C. Gautier, F. Bohnenstengel, H. Kroemer, V. de Berardinis, H. Martin, P. Beaune, and I. de Waziers. Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 9:295-306 (1999).

    Google Scholar 

  49. C. Lindley, G. Hamilton, J. S. McCune, S. Faucette, S. S. Shord, R. L. Hawke, H. Wang, D. Gilbert, S. Jolley, B. Yan, and E. L. LeCluyse. The effect of cyclophosphamide with and without dexamethasone on cytochrome P450 3A4 and 2B6 in human hepatocytes. Drug Metab. Dispos. 30:814-821 (2002).

    Google Scholar 

  50. H. Martin, J. P. Sarsat, I. de Waziers, C. Housset, P. Balladur, P. Beaune, V. Albaladejo, and C. Lerche-Langrand. Induction of cytochrome P450 2B6 and 3A4 expression by phenobarbital and cyclophosphamide in cultured human liver slices. Pharm. Res. 20:557-568 (2003).

    Google Scholar 

  51. T. K. H. Chang, G. F. Weber, C. L. Crespi, and D. J. Waxman. Differential activation of cyclophosphamide and ifosfamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 53:5629-5637 (1993).

    Google Scholar 

  52. T. K. H. Chang, L. Yu, J. A. Goldstein, and D. J. Waxman. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9359-ILE allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Pharmacogenetics 7:211-221 (1997).

    Google Scholar 

  53. S. Ren, J. S. Yang, T. F. Kalhorn, and J. T. Slattery. Oxidation of cyclophosphamide to 4-hydroxycyclophosphamide and deschloroethylcyclophosphamide in human liver microsomes. Cancer Res. 57:4229-4235 (1997).

    Google Scholar 

  54. P. Roy, L. J. Yu, C. L. Crespi, and D. J. Waxman. Development of a substrateactivity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos. 27:655-666 (1999).

    Google Scholar 

  55. L. J. Yu, P. Drewes, K. Gustafsson, E. G. C. Brain, J. E. D. Hecht, and D. J. Waxman. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. Pharmacol. Exp. Ther 288:928-937 (1999).

    Google Scholar 

  56. M. J. Egorin, S. R. Akman, and P. L. Gutierrez. Plasma pharmacokinetics and tissue distribution of thiotepa in mice. Cancer Treat. Rep. 68:1265-1268 (1984).

    Google Scholar 

  57. M. J. van Maanen, I. M. Tijhof, M. A. Damen, C. Versluis, J. J. Kettenes-Van Den Bosch, A. J. R. Heck, S. Rodenhuis, and J. H. Beijnen. A search for new metabolites of thiotepa. Cancer Res. 59:4720-4724 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milly E. de Jonge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jonge, M.E., Huitema, A.D.R., Rodenhuis, S. et al. Integrated Population Pharmacokinetic Model of Both Cyclophosphamide and Thiotepa Suggesting a Mutual Drug–Drug Interaction. J Pharmacokinet Pharmacodyn 31, 135–156 (2004). https://doi.org/10.1023/B:JOPA.0000034405.03895.c2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOPA.0000034405.03895.c2

Navigation