Skip to main content
Log in

Proteoglycans in brain development

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Proteoglycans, as part of the extracellular or cell-surface milieu of most tissues and organ systems, play important roles in morphogenesis by modulating cell-matrix or cell-cell interactions, cell adhesiveness, or by binding and presenting growth and differentiation factors. Chondroitin sulfate proteoglycans which constitute the major population of proteoglycans in the central nervous system may influence formation of neuronal nuclei, establishment of boundaries for axonal growth and act as modulators of neuronal outgrowth during brain development, as well as during regeneration after injury. There is a paucity of information on the role of chondroitin sulfate proteoglycans in central nervous system organogenesis. In the chick embryo, aggrecan has a regionally specific and developmentally regulated expression profile during brain development. By Northern and Western blot analysis, aggrecan expression is first detected in chick brain on embryonic day 7 (E7), increases from E7 to E13, declines markedly after E16, and is not evident in hatchling brains. The time course and pattern of aggrecan expression observed in ventricular zone cells suggested that it might play a role in gliogenesis. We have analyzed the role of aggrecan during brain development using a aggrecan-deficient model, nanomelia. In nanomelic chicks, expression and levels of neurocan and brevican is not affected, indicating a non-redundant role for these members of the aggrecan gene family. Our analysis of the aggrecan-deficient model found a severely altered phenotype which affects cell behavior in a neuronal culture paradigm and expression of astrocytic markers in vivo. Taken together our results suggest a function for aggrecan in the specification of a sub-set of glia precursors that might give rise to astrocytes in vivo. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandtlow CE, Zimmermann DR, Proteoglycans in the developing brain: New conceptual insights for old proteins, Physiol Rev 80, 1267-90 (2000).

    PubMed  CAS  Google Scholar 

  2. Blackhall FH, Merry CL, Davies EJ, Jayson GC, Heparan sulfate proteoglycans and cancer, Br J Cancer 85, 1094-8 (2001).

    PubMed  CAS  Google Scholar 

  3. Filmus J, Glypicans in growth control and cancer, Glycobiology 11, 19R-23R (2001).

    PubMed  CAS  Google Scholar 

  4. Funderburgh JL, Keratan sulfate: Structure, biosynthesis, and function, Glycobiology 10, 951-8 (2000).

    PubMed  CAS  Google Scholar 

  5. Kresse H, Schonherr E, Proteoglycans of the extracellular matrix and growth control, J Cell Physiol 189, 266-74 (2001).

    PubMed  CAS  Google Scholar 

  6. Brittis PA, Silver J, Multiple factors govern intraretinal axon guidance: A time-lapse study, Mol Cell Neurosci 6, 413-32 (1995).

    PubMed  CAS  Google Scholar 

  7. Faissner A, Clement A, Locheter A, Streit A, Mandl C, Schachner M, Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties, J Cell Biol 126, 783-99 (1994).

    PubMed  CAS  Google Scholar 

  8. Condic ML, Snow DM, Letourneau PC, Embryonic neurons adapt to the inhibitory proteoglycan aggrecan by increasing in-tegrin expression, J Neurosci 19, 10036-43 (1999).

    PubMed  CAS  Google Scholar 

  9. McKeon RJ, Schreiber RC, Rudge JS, Silver J, Reduction of neurite outgrowth in the model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes, J Neurosci 11, 3398-411 (1991).

    PubMed  CAS  Google Scholar 

  10. Dityatev A, Schachner M, Extracellular matrix molecules and synaptic plasticity, Nat Rev Neurosci 4, 456-68 (2003).

    PubMed  CAS  Google Scholar 

  11. Johnson AR, Contact inhibition in the failure of mammalian CNS axonal regeneration, Bioessays 15, 807-13 (1993).

    PubMed  CAS  Google Scholar 

  12. Morgenstern DA, Asher RA, Fawcett JW, Chondroitin sulphate proteoglycans in the CNS injury response, Prog Brain Res 137, 313-32 (2002).

    PubMed  CAS  Google Scholar 

  13. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB, Chondroitinase ABC promotes functional recovery after spinal cord injury, Nature 416, 636-40 (2002).

    PubMed  CAS  Google Scholar 

  14. Moon LD, Asher RA, Rhodes KE, Fawcett JW, Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC, Nat Neurosci 4, 465-6 (2001).

    PubMed  CAS  Google Scholar 

  15. Yick LW, Wu W, So KF, Yip HK, Shum DK, Chondroitinase ABC promotes axonal regeneration of Clarke's neurons after spinal cord injury, Neuroreport 11, 1063-7 (2000).

    PubMed  CAS  Google Scholar 

  16. Esko JD, Lindahl U, Molecular diversity of heparan sulfate, J Clin Invest 108, 169-73 (2001).

    PubMed  CAS  Google Scholar 

  17. Iozzo RV, Matrix proteoglycans: From molecular design to cel-lular function, Annu Rev Biochem 67, 609-52 (1998).

    PubMed  CAS  Google Scholar 

  18. Kjellen L, Lindahl U, Proteoglycans: Structures and interactions, Annu Rev Biochem 60, 443-75 (1991).

    PubMed  CAS  Google Scholar 

  19. Oldberg A, Antonsson P, Hedbom E, Heinegard D, Structure and function of extracellular matrix proteoglycans, Biochem Soc Trans 18, 789-92 (1990).

    PubMed  CAS  Google Scholar 

  20. Ruoslahti E, Structure and biology of proteoglycans, Annu Rev Cell Biol 4, 229-55 (1988).

    PubMed  CAS  Google Scholar 

  21. Schwartz NB, Biosynthesis and regulation of expression of proteoglycans, Front Biosci 5, D649-55 (2000).

    PubMed  CAS  Google Scholar 

  22. Schwartz NB, Proteoglycans. In Encyclopedia of Life Sciences, edited by Pidgeon S (Nature Publishing Group, London, 2000), www.els.net.

    Google Scholar 

  23. Wight TN, Heinegard DK, Hascall VC, Proteoglycans, Structure and Function (Plenum Press, New York, 1991), pp. 45-78.

    Google Scholar 

  24. Hassell JR, Kimura JH, Hascall VC, Proteoglycan core protein families, Annu Rev Biochem 55, 539-67 (1986).

    PubMed  CAS  Google Scholar 

  25. Iozzo RV, Danielson KG, Transcriptional and posttranscriptional regulation of proteoglycan gene expression, Prog Nucleic Acid Res Mol Biol 62, 19-53 (1999).

    PubMed  CAS  Google Scholar 

  26. Schwartz NB, Pirok EW, III, Mensch JR, Jr, Domowicz MS, Domain organization, genomic structure, evolution, and regulation of expression of the aggrecan gene family, Prog Nucleic Acid Res Mol Biol 62, 177-225 (1999).

    PubMed  CAS  Google Scholar 

  27. De Cat B, David G, Developmental roles of the glypicans, Semin Cell Dev Biol 12, 117-25 (2001).

    PubMed  CAS  Google Scholar 

  28. Knudson CB, Knudson W, Cartilage proteoglycans, Semin Cell Dev Biol 12, 69-78 (2001).

    PubMed  CAS  Google Scholar 

  29. Rapraeger AC, Molecular interactions of syndecans during development, Semin Cell Dev Biol 12, 107-16 (2001).

    PubMed  CAS  Google Scholar 

  30. Ruoslahti E, Yamaguchi Y, Proteoglycans as modulators of growth factor activities, Cell 64, 867-9 (1991).

    PubMed  CAS  Google Scholar 

  31. Hascall VC, Interaction of cartilage proteoglycans with hyaluronic acid, J Supramol Struct 7, 101-20 (1977).

    PubMed  CAS  Google Scholar 

  32. Ezura Y, Chakravarti S, Oldberg A, Chervoneva I, Birk DE, Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons, J Cell Biol 151, 779-88 (2000).

    PubMed  CAS  Google Scholar 

  33. Svensson L, Narlid I, Oldberg A, Fibromodulin and lumican bind to the same region on collagen type I fibrils, FEBS Lett 470, 178-82 (2000).

    PubMed  CAS  Google Scholar 

  34. Bourdon MA, Krusius T, Campbell S, Schwartz NB, Ruoslahti E, Identification and synthesis of a recognition signal for the attachment of glycosaminoglycans to proteins, Proc Natl Acad Sci 84, 3194-8 (1987).

    PubMed  CAS  Google Scholar 

  35. Esko JD, Zhang L, Influence of core protein sequence on glycosaminoglycan assembly, Curr Opin Struct Biol 6, 663-70 (1996).

    PubMed  CAS  Google Scholar 

  36. Schwartz NB, Xylosylation, the first step in the synthesis of proteoglycans, Trends Glycosci Glycotechnol 7, 429-45 (1995).

    CAS  Google Scholar 

  37. Sugahara K, Kitagawa H, Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans, Curr Opin Struct Biol 10, 518-27 (2000).

    PubMed  CAS  Google Scholar 

  38. Lindahl U, Kusche-Gullberg M, Kjellen L, Regulated diversity of heparan sulfate, J Biol Chem 273, 24979-82 (1998).

    PubMed  CAS  Google Scholar 

  39. Luo W, Guo C, Zheng J, Chen TL, Wang PY, Vertel BM, Tanzer ML, Aggrecan from start to finish, J Bone Miner Metab 18, 51-6 (2000).

    PubMed  CAS  Google Scholar 

  40. Kearns AE, Vertel BM, Schwartz NB, Topography of glycosylation and UDP-xylose production, J Biol Chem 268, 11097-104 (1993).

    PubMed  CAS  Google Scholar 

  41. Vertel BM, Grier BL, Li H, Schwartz NB, The chondrodystrophy, nanomelia: Biosynthesis and processing of the defective aggrecan precursor, Biochem J 301, 211-6 (1994).

    PubMed  CAS  Google Scholar 

  42. Margolis RU, Margolis RK, Chang LB, Preti C, Glycosamino-glycans of brain during development, Biochem 14, 85-8 (1975).

    CAS  Google Scholar 

  43. Bretscher MS, Heparan sulphate proteoglycans and their polypeptide chains from BHK cells, EMBO J 4, 1941-4 (1985).

    PubMed  CAS  Google Scholar 

  44. Gowda DC, Margolis RU, Margolis RK, Presence of the HNK-1 epitope or poly(N-acetyllactosaminyl) oligosaccha-rides and identification of multiple core protein in the chon-droitin sulfate proteoglycan brain., Biochemistry 28, 4468-74 (1989).

    PubMed  CAS  Google Scholar 

  45. Herndon ME, Lander AD, Adiverse set of developmentally regulated proteoglycans is expressed in the rat central nervous system, Neuron 4, 949-61 (1990).

    PubMed  CAS  Google Scholar 

  46. Oohira A, Brain development and multiple molecular species of proteoglycan, Neurosci Res 20, 195-207 (1994).

    PubMed  CAS  Google Scholar 

  47. Oohira A, Matsui F, Matsuda M, Takida Y, Kuboki Y, Occurrence of three distinct molecular species of chondroitin sulfate proteo-glycan in the developing rat brain, J Biol Chem 263, 10240-46 (1988).

    PubMed  CAS  Google Scholar 

  48. Rauch U, Gao P, Janetzko A, Flaccus A, Hiligenberg L, Tekotte H, Margolis RK, Margolis RU, Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/ keratan sulfate proteoglycans of brain identified with monoclonal antibodies, J Biol Chem 266, 14785-801 (1991).

    PubMed  CAS  Google Scholar 

  49. Aquino DA, Margolis RU, Margolis RK, Immunocytochemical localization of a chondroitin sulfate proteoglycan in nervous tissue II. Studies in developing brain, J Cell Biol 99, 1130-9 (1984).

    PubMed  CAS  Google Scholar 

  50. Margolis RK, Margolis RU, Structure and localization of glycoprotein and proteoglycans. In Neurobiology of Glycoconjugates, edited by Margolis RU, Margolis RK (Plenum, New York, 1989), pp. 85-18.

    Google Scholar 

  51. Oohira A, Matsui F, Matsuda M, Shoji R, Developmental change in the glycosaminoglycan occurrence of the three distinct molec-ular species of chondroitin sulfate proteoglycan in the developing rat brain, J Biol Chem 263, 10240-6 (1986).

    Google Scholar 

  52. Schwartz NB, Domowicz M, Krueger RK, Li H, Mangoura D, Brain Aggrecan, Perspectives in Dev Neurobiol 3, 291-306 (1996).

    CAS  Google Scholar 

  53. Crawford T, Distribution in cesium chloride gradients of proteoglycans of chick embryo brain and characterization of a large aggregating proteoglycan, Biochim Biophys Acta 964, 183-92 (1988).

    PubMed  CAS  Google Scholar 

  54. Hennig AK, Mangoura D, Schwartz NB, Large chondroitin sul-fate proteoglycans of developing chick CNS are expressed in cerebral hemisphere neuronal culture, Dev Brain Res 73, 261-72 (1993).

    CAS  Google Scholar 

  55. Krueger RC, Hennig AK, Schwartz NB, Two immunologically and developmentally distinct chondroitin sulfate proteo-glycans in embryonic chick brain, J Biol Chem 267, 12149-61 (1992).

    PubMed  CAS  Google Scholar 

  56. Kiang WL, Margolis RU, Margolis RK, Fractionation and properties of a chondroitin sulfate proteoglycan and the soluble glycoproteins of brain, J Biol Chem 256, 10529-37 (1981).

    PubMed  CAS  Google Scholar 

  57. Norling B, Glemilius B, Westermark B, Wasteson A, Chondroitin sulfate proteoglycans from cultured glial cells aggregate with hyaluronic acid, Biochem Biophys Res Commun 84, 914-21 (1987).

    Google Scholar 

  58. Stallcup NB, Bearsley L, Biopotencial glial precursor cells of the optic nerve express the NG2 proteoglycan, J Neurosci 7, 2737-44 (1987).

    PubMed  CAS  Google Scholar 

  59. Streit A, Nolte C, Rasony T, Schachner M, Interaction of astro-chondrin with extracellular matrix components and its involve-ment in astrocyte process formation and cerebellar granule cell migration, J Cell Bio 120, 799-814 (1993).

    CAS  Google Scholar 

  60. Fryer HJ, Gail MK, Molinaro L, Hockfield S, The high molecu-lar weight Cat-301 chondroitin sulfate proteoglycan from brain is related to the large aggregating proteoglycan from cartilage aggrecan, J Biol Chem 267, 9874-83 (1992).

    PubMed  CAS  Google Scholar 

  61. Bertolotto A, Rocca G, Schiffer D, Chondroitin 4-sulfate proteo-glycan forms an extracellular network in human and rat central nervous system, J Neurol Sci 100, 113-23 (1990).

    PubMed  CAS  Google Scholar 

  62. Fujita SC, Tada Y, Murakami F, Hayashi M, Matsumura M, Glycosaminoglycans-related epitopes surrounding different subsets of mammalian central neurons, Neurosci Res 7, 117-30 (1989).

    PubMed  CAS  Google Scholar 

  63. Hoffman S, Crossin KL, Edelman GE, Molecular forms, binding functions and developmental expression patterns of cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules, J Cell Biol 106, 519-32 (1988).

    PubMed  CAS  Google Scholar 

  64. Williams C, Hinton DR, Miller CA, Somataglycan-S: Neural surface proteoglycan defines the spinocerebellar system, J Neu-rochem 62, 1615-30 (1994).

    CAS  Google Scholar 

  65. Maeda N, Matsui F, Oohira A, Achondroitin sulfate proteoglycan that is developmentally regulated in the cerebelar mossy fiber system, Dev Biol 151, 564-74 (1992).

    PubMed  CAS  Google Scholar 

  66. Levine JM, Card JP, Ligth and electromicroscopic localization of a cell surface antigen (NG2) in the rat cerebellun: Associa-tion with smooth protoplasmic astrocytes, J Neurosci 7, 2711-20 (1987).

    PubMed  CAS  Google Scholar 

  67. Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB, Colocalization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain, J Neurosci Res 43, 299-314 (1996).

    PubMed  CAS  Google Scholar 

  68. Bignami A, Perides G, Rahemtulla F, Versican, a hyaluronate-binding proteoglycan of embryonal precartilaginous mes-enchyma, is mainly expressed postnatally in rat brain, J ofNeu-rosci Res 34, 97-106 (1993).

    CAS  Google Scholar 

  69. Perides G, Rahemtulla F, Lane WS, Asher AA, Bignami A, Iso-lation of a large aggregating proteoglycan from human brain, J Biol Chem 267, 23883-7 (1992).

    PubMed  CAS  Google Scholar 

  70. Rauch U, Karthikeyan L, Maurel P, Margolis RU, Margolis RK, Cloning and primary structure of Neurocan, a developmentally regulated aggregating chondroitin sulfate proteoglycan, J Biol Chem 267, 1953.

  71. Yamada H, Watanabe K, Shimonaka M, Yamaguchi Y, Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versican family, J Biol Chem 269, 10119-26 (1994).

    PubMed  CAS  Google Scholar 

  72. Ruoslahti E, Proteoglycans in cell regulation, J Biol Chem 264, 13369-72 (1989).

    PubMed  CAS  Google Scholar 

  73. Jaworski DM, Kelly GM, Hockfield S, The CNS-specific hyaluronan-binding protein BEHAB is expressed in ventricular zones coincident with gliogenesis, J Neurosci 15, 1352-62 (1995).

    PubMed  CAS  Google Scholar 

  74. Yamada H, Fredette B, Shitara K, Hagihara K, Miura R, Ranscht B, Stallcup WB, Yamaguchi Y, The brain chondroitin sulfate proteoglycan brevican associates with astrocytes en-sheathing cerebellar glomeruli and inhibits neurite outgrowth from granule neurons, J Neurosci 17, 7784-95 (1997).

    PubMed  CAS  Google Scholar 

  75. Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M, Hockfield S, Aggrecan glycoforms contribute to the molecu-lar heterogeneity of perineuronal nets, J Neurosci 22, 7536-47 (2002).

    PubMed  CAS  Google Scholar 

  76. Zaremba S, Guimaraes A, Kalb R, Hockfield S, Characterization of an activity-dependent, neuronal surface proteoglycan identified with monoclonal antibody Cat-301, Neuron 2, 1207-19 (1989).

    PubMed  CAS  Google Scholar 

  77. Bonnet F, Perin JP, Charbonnier F, Camuzat A, Rousell G, Nussbaum JL, Alliel PM, Structure and cellular distribution of mouse brain testican; Association with the postsynaptic area of hippocampus piramidal cells, J Biol Chem 271, 4373-80 (1996).

    PubMed  CAS  Google Scholar 

  78. Charbonnier F, Chanoine C, Cifuentes-Diaz C, Gallien CL, Rieger F, Alliel PM and Perin JP, Expression of the proteogly-can SPOCK during mouse embryo development, Mech Dev 90, 317-21 (2000).

    PubMed  CAS  Google Scholar 

  79. Vannahme C, Schubel S, Herud M, Gosling S, Hulsmann H, Paulsson M, Hartmann U, Maurer P, Molecular cloning of testican-2: Defining a novel calcium-binding proteoglycan family expressed in brain, J Neurochem 73, 12-20 (1999).

    PubMed  CAS  Google Scholar 

  80. Nakada M, Miyamori H, Yamashita J, Sato H, Testican 2 ab-rogates inhibition of membrane-type matrix metalloproteinases by other testican family proteins, Cancer Res 63, 3364-9 (2003).

    PubMed  CAS  Google Scholar 

  81. Nakada M, Yamada A, Takino T, Miyamori H, Takahashi T, Yamashita J, Sato H, Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tu-mor invasion by testican 3 and its splicing variant gene product, N-Tes, Cancer Res 61, 8896-902 (2001).

    PubMed  CAS  Google Scholar 

  82. Aono S, Keino H, Ono T, Yasuda Y, Tokita Y, Matsui F, Taniguchi M, Sonta S, Oohira A, Genomic organization and expression pattern of mouse neuroglycan C in the cerebellar development, J Biol Chem 275, 337-42 (2000).

    PubMed  CAS  Google Scholar 

  83. Yasuda Y, Tokita Y, Aono S, Matsui F, Ono T, Sonta S, Watan-abe E, Nakanishi Y, Oohira A, Cloning and chromosomal map-ping of the human gene of neuroglycan C (NGC), a neural trans-membrane chondroitin sulfate proteoglycan with an EGFmodule, Neurosci Res 32, 313-22 (1998).

    PubMed  CAS  Google Scholar 

  84. Canoll PD, Petanceska S, Schlessinger J, Musacchio JM, Three forms of RPTP-beta are differentially expressed during gliogene-sis in the developing rat brain and during glial cell differentiation in culture, J Neurosci Res 44, 199-215 (1996).

    PubMed  CAS  Google Scholar 

  85. Sakurai T, Friedlander DR, Grumet M, Expression of polypeptide variants of receptor-type protein tyrosine phosphatase beta: The secreted form, phosphacan, increases dramatically during em-bryonic development and modulates glial cell behavior in vitro, J Neurosci Res 43, 694-706 (1996).

    PubMed  CAS  Google Scholar 

  86. Butler CD, Schnetz SA, Yu EY, Davis JB, Temple K, Silver J, Malouf AT, Keratan sulfate proteoglycan phosphacan regulates mossy fiber outgrowth and regeneration, J Neurosci 24, 462-73 (2004).

    PubMed  CAS  Google Scholar 

  87. Margolis RE, Rauch U, Maurel P, Margolis RU, Neurocan, Phos-phacan: Two major nervous tissue-specific chondroitin sulfate proteoglycans, Presp Dev Neurobiol 3, 273-90 (1996).

    CAS  Google Scholar 

  88. Meyer-Puttlitz B, Junker E, Margolis RU, Margolis RK, Chon-droitin sulfate proteoglycans in the developing central nerovus sytesm. II. Immunocytochemical localization of neurocan and phosphacan, J Comp Neurol 366, 44-54 (1996).

    PubMed  CAS  Google Scholar 

  89. Dawson MR, Polito A, Levine JM, Reynolds R, NG2-expressing glial progenitor cells: An abundant and widespread population of cycling cells in the adult rat CNS, Mol Cell Neurosci 24, 476-88 (2003).

    PubMed  CAS  Google Scholar 

  90. Levine JM, Nishiyama A, The NG2 chondroitin sulfate proteo-glycan: A multifunctional proteoglycan associated with imma-ture cells, Perspect Dev Neurobiol 3, 245-59 (1996).

    PubMed  CAS  Google Scholar 

  91. Stallcup WB, The NG2 proteoglycan: Past insights and future prospects, J Neurocytol 31, 423-35 (2002).

    PubMed  CAS  Google Scholar 

  92. Borges K, McDermott DL, Dingledine R, Reciprocal changes of CD44 and GAP-43 expression in the dentate gyrus inner molec-ular layer after status epilepticus in mice, Exp Neurol 188, 1-10 (2004).

    PubMed  CAS  Google Scholar 

  93. Radotra B, McCormick D, Crockard A, CD44 plays a role in ad-hesive interactions between glioma cells and extracellular matrix components, Neuropathol Appl Neurobiol 20, 399-405 (1994).

    PubMed  CAS  Google Scholar 

  94. Sretavan DW, Feng L, Pure E, Reichardt LF, Embryonic neurons of the developing optic chiasm express L1 and CD44, cell surface molecules with opposing effects on retinal axon growth, Neuron 12, 957-75 (1994).

    PubMed  CAS  Google Scholar 

  95. Pangalos MN, Efthimiopoulos S, Shioi J, Robakis NK, The chon-droitin sulfate attachment site of appican is formed by splicing out exon 15 of the amyloid precursor gene, J Biol Chem 270, 10388-91 (1995).

    PubMed  CAS  Google Scholar 

  96. Pangalos MN, Shioi J, Robakis NK, Expression of the chon-droitin sulfate proteoglycans of amyloid precursor (appican) and amyloid precursor-like protein 2, J Neurochem 65, 762-9 (1995).

    PubMed  CAS  Google Scholar 

  97. Umehara Y, Yamada S, Nishimura S, Shioi J, Robakis NK, Sug-ahara K, Chondroitin sulfate of appican, the proteoglycan form of amyloid precursor protein, produced by C6 glioma cells in-teracts with heparin-binding neuroregulatory factors, FEBS Lett 557, 233-8 (2004).

    PubMed  CAS  Google Scholar 

  98. Domowicz MS, Li H, Hennig AK, Vertel B, Schwartz NB, The biochemically and immunologically distinct CSPG of notochord is a product of the aggrecan gene, Dev Biol 171, 655-64 (1995).

    PubMed  CAS  Google Scholar 

  99. Li H, Domowicz MS, Hennig A, Schwartz NB, S103L reactive chondroitin sulfate proteoglycan (aggrecan) mRNA expressed in developing chick brain and cartilage is encoded by a single gene, Mol. Brain Res 36, 309-21 (1996).

    PubMed  CAS  Google Scholar 

  100. Mathews MB, Connective Tissue. Macromolecular Structure and Evolution (Springer-Verlag, Berlin-Heidelberg-New York, 1975).

    Google Scholar 

  101. Domowicz MS, Mueller MM, Novak TE, Schwartz LE, Schwartz NB, Developmental expression of the HNK-1 carbohydrate epitope on aggrecan during chondrogenesis, Dev Dyn 226, 42-50 (2003).

    PubMed  CAS  Google Scholar 

  102. Sugumaran G, Silbert JE, Sulfation of chondroitin, J Biol Chem 263, 4673-8 (1988).

    PubMed  CAS  Google Scholar 

  103. Domowicz M, Mangoura D, Schwartz NB, Cell specific-chondroitin sulfate proteoglycan expression during CNS morphogenesis in the chick embryo, Int J Dev Neurosci 18, 629-41 (2000).

    PubMed  CAS  Google Scholar 

  104. Hennig AK, Krueger R, Mangoura D, Schwartz NB, Chondroitin sulfate proteoglycan expression during neuronal development, Cell Mol Biol 38, 585-93 (1992).

    PubMed  CAS  Google Scholar 

  105. Hennig AK, Schwartz NB, Characterization of a large chondroitin sulfate proteoglycan associated with the notochord in 2-to 4-day old chick embryos, J Cell Biol 115, 731a (1991).

    Google Scholar 

  106. Streit A, Faissner A, Gehrig B, Schachner M, Isolation and bio-chemical charactherization of a neural proteoglycan expressing the L5 carbohydrate epitope, J Neurochem 55, 1494-507 (1990).

    PubMed  CAS  Google Scholar 

  107. Mangoura D, Sakellaridis N, Vernadakis A, Cholinergic neurons in cultures derived from three-, six-, eight-day-old chick embryo: A biochemical, immunocytochemical study, Dev Brain Res 40, 37-46 (1988).

    CAS  Google Scholar 

  108. Mangoura D, Vernadakis A, GABAergic neurons in cultures de-rived from three-, six-or eight-day-old chick embryo: A bio-chemical and immunocytochemical study, Brain Res 468, 25-35 (1988).

    PubMed  CAS  Google Scholar 

  109. Maurel P, Rauch U, Flad M, Margolis RK, Margolis RU, Phosphocan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neuronal cell-adhesion molecules, is an extra-cellular variant of a receptor-type protein tyroine phosphatase, Proc Natl Acad Sci USA 91, 2512-6 (1994).

    PubMed  CAS  Google Scholar 

  110. Domowicz MS, Mangoura D, Schwartz NB, Aggrecan regulates telencephalic neuronal aggregation in culture, Brain Res Dev Brain Res 143, 207-16 (2003).

    PubMed  CAS  Google Scholar 

  111. Landauer W, Nanomelia, a lethal mutation of the fowl, J Hered. 56, 131-8 (1965).

    PubMed  CAS  Google Scholar 

  112. Domowicz MS, Krueger RC, Li H, Mangoura D, Vertel BM, Schwartz NB, The nanomelic mutation in the aggrecan gene is expressed in chick chondrocytes and neurons, Int J Dev Neurosci 14, 191-201 (1996).

    PubMed  CAS  Google Scholar 

  113. Li H, Schwartz NB, Vertel BM, cDNA cloning of chick cartilage chondroitin sulfate (aggrecan) core protein and identification of a stop codon in the aggrecan gene associated with the chondrodys-trophy, nanomelia, J Biol Chem 268, 23504-11 (1993).

    PubMed  CAS  Google Scholar 

  114. Krueger RC, Kurima K, Schwartz NB, Completion of the mouse aggrecan structure and identification of the defect in the cmd-Bc as a near complete deletion of the murine aggrecan, Mamm Genome 10, 1119-25 (1999).

    PubMed  CAS  Google Scholar 

  115. Watanabe H, Nakata K, Kimata K, Nakanishi I, Yamada Y, Dwarfism and age-associated spinal degeneration of heterozy-gote cmd mice defective in aggrecan, Proc Natl Acad Sci USA 94, 6943-7 (1997).

    PubMed  CAS  Google Scholar 

  116. Brakebusch C, Seidenbecher CI, Asztely F, Rauch U, Matthies H, Meyer H, Krug M, Bockers TM, Zhou X, Kreutz MR, Montag D, Gundelfinger ED, Fassler R, Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory, Mol Cell Biol 22, 7417-27 (2002).

    PubMed  CAS  Google Scholar 

  117. Hartmann U, Maurer P, Proteoglycans in the nervous system-the quest for functional roles in vivo, Matrix Biol 20, 23-35 (2001).

    PubMed  CAS  Google Scholar 

  118. Zhou XH, Brakebusch C, Matthies H, Oohashi T, Hirsch E, Moser M, Krug M, Seidenbecher CI, Boeckers TM, Rauch U, Buettner R, Gundelfinger ED, Fassler R, Neurocan is dispensable for brain development, Mol Cell Biol 21, 5970-8 (2001).

    PubMed  CAS  Google Scholar 

  119. Domowicz M, Sanders TA, Ragsdale CW, Schwartz N, Patterns of Aggrecan during chick brain development suggest a role in gli-ogenesis, Society for Neuroscience, 29th Annual Meeting, Miami Beach, FL 25,(Part 1), 1031 (1999).

    Google Scholar 

  120. Schwartz NB, Domowicz MS, Role of aggrecan in developing brain, American Society for Neurochemistry, 31st Annual Meet-ing, Chicago, Illinois Neurochemistry (74 Suppl.), S3A (2000).

  121. Domowicz MS, Henry J, Mueller M, Schwartz NB, Expression of Aggrecan in glial progenitors, American Society for Cell Biology, 41th Annual Meeting, Washington D.C. Molecular Biology of the Cell (12 Suppl.), 62a (2001).

  122. Watanabe E, Maeda N, Matsui F, Kushima Y, Noda M, Oohira A, Neuroglycan C, a novel membrane-spanning chondroitin sulfate proteoglycan that is restricted to the brain, J Biol Chem 270, 26876-82 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy B. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, N.B., Domowicz, M. Proteoglycans in brain development. Glycoconj J 21, 329–341 (2004). https://doi.org/10.1023/B:GLYC.0000046278.34016.36

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000046278.34016.36

Navigation