Skip to main content
Log in

Galectins as inflammatory mediators

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Over the last decade a vast amount of reports have shown that galectin-1 and galectin-3 are important mediators of inflammation. In this review we describe how the galectins may be involved in several parts of the inflammatory process, including the recruitment of neutrophils into an infected tissue and the recognition and killing of bacteria by activation of the tissue destructive phagocytic respiratory burst. During bacterial infection or aseptic inflammatory processes, galectins are produced and released by e.g. infected epithelium, activated tissue-resident macrophages and endothelial cells. These extracellular galectins may facilitate binding of neutrophils to the endothelium by cross-linking carbohydrates on the respective cells. Further the galectins improve binding of the neutrophil to the extracellular matrix proteins laminin and fibronectin, and are potential chemotactic factors, inducing migration through the extracellular matrix towards the inflammatory focus. When the cells encounter bacteria, galectin-3 could function as an opsonin, cross-linking bacterial lipopolysaccharide or other carbohydrate-containing surface structures to phagocyte surface glycoconjugates. Both galectin-1 and galectin-3 have the capacity to induce a respiratory burst in neutrophils, provided that the cells have been primed by degranulation and receptor upregulation. The reactive oxygen species produced may be destructive to the invading micro-organisms as well as to the surrounding host tissue, pointing out the possible role of galectins, not only in defence toward infection, but also in inflammatory-induced tissue destruction. Published in 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barondes SH, Cooper DN, Gitt MA, Leffler H, Galectins, Structure and function of a large family of animal lectins, J Biol Chem 269, 20807-10 (1994).

    Google Scholar 

  2. Cooper DN, Barondes SH, God must love galectins; He made so many of them, Glycobiology 9, 979-84 (1999).

    Google Scholar 

  3. Leffler H, Galectins, structure and function. In A Synopsis in Mammalian Carbohydrate Recognition Systems edited by Crocker P (Springer Verlag, Heidelberg, 2001), pp. 57-83.

    Google Scholar 

  4. Muesch A, Hartmann E, Rohde K, Rubartelli A, Sitia R, Rapoport TA, A novel pathway for secretory proteins?, Trends Biochem Sci 15, 86-8 (1990).

    Google Scholar 

  5. Inflammation, Basic Principles and Clinical Correlates (Lippincott, Williams &; Wilkins, Philadelphia, 1999).

  6. Perillo NL, Marcus ME, Baum LG, Galectins: Versatile modulators of cell adhesion, cell proliferation, and cell death, J Mol Med 76, 402-12 (1998).

    Google Scholar 

  7. Rabinovich GA, Rubinstein N, Fainboim L, Unlocking the secrets of galectins: A challenge at the frontier of glyco-immunology, J Leukoc Biol 71, 741-52 (2002).

    Google Scholar 

  8. Liu FT, Galectins: A new family of regulators of inflammation, Clin Immunol 97, 79-88 (2000).

    Google Scholar 

  9. Crouch EC, Persson A, Griffin GL, Chang D, Senior RM, Interactions of pulmonary surfactant protein D (SP-D) with human blood leukocytes, Am J Respir Cell Mol Biol 12, 410-15 (1995).

    Google Scholar 

  10. Hartshorn KL, Crouch E, White MR, Colamussi ML, Kakkanatt A, Tauber B, Shepherd V, Sastry KN, Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria, Am J Physiol 274, L958-69 (1998).

    Google Scholar 

  11. Mizgerd JP, Kubo H, Kutkoski GJ, Bhagwan SD, Scharffetter-Kochanek K, Beaudet AL, Doerschuk CM, Neutrophil emigration in the skin, lungs, and peritoneum: Different requirements for CD11/CD18 revealed by CD18-deficient mice, J Exp Med 186, 1357-64 (1997).

    Google Scholar 

  12. Mizgerd JP, Horwitz BH, Quillen HC, Scott ML, Doerschuk CM, Effects of CD18 deficiency on the emigration of murine neutrophils during pneumonia, J Immunol 163, 995-9 (1999).

    Google Scholar 

  13. Sato S, Ouellet N, Pelletier I, Simard M, Rancourt A, Bergeron MG, Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia, J Immunol 168, 1813-22 (2002).

    Google Scholar 

  14. Colnot C, Fowlis D, Ripoche MA, Bouchaert I, Poirier F, Embryonic implantation in galectin 1/galectin 3 double mutant mice, Dev Dyn 211, 306-13 (1998).

    Google Scholar 

  15. Hsu DK, Yang RY, Pan Z, Yu L, Salomon DR, Fung-Leung WP, Liu FT, Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses,AmJ Pathol 156, 1073-83 (2000).

    Google Scholar 

  16. Colnot C, Ripoche MA, Milon G, Montagutelli X, Crocker PR, Poirier F, Maintenance of granulocyte numbers during acute peritonitis is defective in galectin-3-null mutant mice, Immunology 94, 290-96 (1998).

    Google Scholar 

  17. Poirier F, Robertson EJ, Normal development of mice carrying a null mutation in the gene encoding the L14 S-type lectin, Development 119, 1229-36 (1993).

    Google Scholar 

  18. Lotan R, Belloni PN, Tressler RJ, Lotan D, Xu XC, Nicolson GL, Expression of galectins on microvessel endothelial cells and their involvement in tumour cell adhesion, Glycoconj J 11, 462-8 (1994).

    Google Scholar 

  19. Baum LG, Seilhamer JJ, Pang M, Levine WB, Beynon D, Berliner JA, Synthesis of an endogeneous lectin, galectin-1, by human endothelial cells is up-regulated by endothelial cell activation, Glycoconj J 12, 63-8 (1995).

    Google Scholar 

  20. Truong MJ, Gruart V, Kusnierz JP, Papin JP, Loiseau S, Capron A, Capron M, Human neutrophils express immunoglobulin E (IgE)-binding proteins (Mac-2/epsilon BP) of the S-type lectin family: Role in IgE-dependent activation, J Exp Med 177, 243-8 (1993).

    Google Scholar 

  21. Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR, Jr., Expression and function of galectin-3, a beta-galactosidebinding lectin, in human monocytes and macrophages,AmJ Pathol 147, 1016-28 (1995).

    Google Scholar 

  22. Jeng KC, Frigeri LG, Liu FT, An endogenous lectin, galectin-3 (epsilon BP/Mac-2), potentiates IL-1 production by human monocytes, Immunol Lett 42, 113-6 (1994).

    Google Scholar 

  23. Sano H, Hsu DK, Yu L, Apgar JR, Kuwabara I, Yamanaka T, Hirashima M, Liu FT, Human galectin-3 is a novel chemoattractant for monocytes and macrophages, J Immunol 165, 2156-64 (2000).

    Google Scholar 

  24. Rabinovich GA, Sotomayor CE, Riera CM, Bianco I, Correa SG, Evidence of a role for galectin-1 in acute inflammation, Eur J Immunol 30, 1331-9 (2000).

    Google Scholar 

  25. Delbrouck C, Doyen I, Belot N, Decaestecker C, Ghanooni R, de Lavareille A, Kaltner H, Choufani G, Danguy A, Vandenhoven G, Gabius HJ, Hassid S, Kiss R, Galectin-1 is overexpressed in nasal polyps under budesonide and inhibits eosinophil migration, Lab Invest 82, 147-58 (2002).

    Google Scholar 

  26. Zhou Q, Cummings RD, L-14 lectin recognition of laminin and its promotion of in vitro cell adhesion, Arch Biochem Biophys 300, 6-17 (1993).

    Google Scholar 

  27. van den Brule FA, Buicu C, Baldet M, Sobel ME, Cooper DN, Marschal P, Castronovo V, Galectin-1 modulates human melanoma cell adhesion to laminin, Biochem Biophys Res Commun 209, 760-67 (1995).

    Google Scholar 

  28. Cooper DN, Massa SM, Barondes SH, Endogenous muscle lectin inhibits myoblast adhesion to laminin, J Cell Biol 115, 1437-48 (1991).

    Google Scholar 

  29. Sato S, Hughes RC, Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin, J Biol Chem 267, 6983-90 (1992).

    Google Scholar 

  30. Rabinovich GA, Ariel A, Hershkoviz R, Hirabayashi J, Kasai KI, Lider O, Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1, Immunology 97, 100-6 (1999).

    Google Scholar 

  31. Ozeki Y, Matsui T, Yamamoto Y, Funahashi M, Hamako J, Titani K, Tissue fibronectin is an endogenous ligand for galectin-1, Glycobiology 5, 255-61 (1995).

    Google Scholar 

  32. Kuwabara I, Liu FT, Galectin-3 promotes adhesion of human neutrophils to laminin, J Immunol 156, 3939-44 (1996).

    Google Scholar 

  33. Massa SM, Cooper DN, Leffler H, Barondes SH, L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity, Biochemistry 32, 260-67 (1993).

    Google Scholar 

  34. Woo HJ, Shaw LM, Messier JM, Mercurio AM, The major nonintegrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2), J Biol Chem 265, 7097-9 (1990).

    Google Scholar 

  35. Ofek I, Goldhar J, Keisari Y, Sharon N, Nonopsonic phagocytosis of microorganisms, Annu Rev Microbiol 49, 239-76 (1995).

    Google Scholar 

  36. John CM, Jarvis GA, Swanson KV, Leffler H, Cooper MD, Huflejt ME, Griffiss JMl, Galectin-3 binds lactosaminylated lipooligosaccharides from Neisseria gonorrhoeae and is selectively expressed by mucosal epithelial cells that are infected, Cell Microbiol 4, 649-62 (2002).

    Google Scholar 

  37. Lindstedt R, Lectins at Epithelial Surfaces (University of Lund, 1993).

  38. Mandrell RE, Apicella MA, Lindstedt R, Leffler H, Possible interaction between animal lectins and bacterial carbohydrates, Meth Enzymol 236, 231-54 (1994).

    Google Scholar 

  39. Mey A, Leffler H, Hmama Z, Normier G, Revillard JP, The animal lectin galectin-3 interacts with bacterial lipopolysaccharides via two independent sites, J Immunol 156, 1572-7 (1996).

    Google Scholar 

  40. Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu F-T, Critical role of galectin-3 in phagocytosis by macrophages, J Clin Invest 112, 389-97 (2003).

    Google Scholar 

  41. Babior BM, NADPH oxidase: An update, Blood 93, 1464-76 (1999).

    Google Scholar 

  42. Dahlgren C, Karlsson A, Respiratory burst in human neutrophils, J Immunol Meth 232, 3-14 (1999).

    Google Scholar 

  43. Karlsson A, Dahlgren C, Assembly and activation of the neutrophil NADPH oxidase in granule membranes, Antioxid Redox Signal 4, 49-60 (2002).

    Google Scholar 

  44. Almkvist J, Dahlgren C, Leffler H, Karlsson A, Activation of the neutrophil nicotinamide adenine dinucleotide phosphate oxidase by galectin-1, J Immunol 168, 4034-41 (2002).

    Google Scholar 

  45. Karlsson A, Follin P, Leffler H, Dahlgren C, Galectin-3 activates the NADPH-oxidase in exudated but not peripheral blood neutrophils, Blood 91, 3430-8 (1998).

    Google Scholar 

  46. Yamaoka A, Kuwabara I, Frigeri LG, Liu FT, A human lectin, galectin-3 (epsilon bp/Mac-2), stimulates superoxide production by neutrophils, J Immunol 154, 3479-87 (1995).

    Google Scholar 

  47. Liu FT, Hsu DK, Zuberi RI, Hill PN, Shenhav A, Kuwabara I, Chen SS, Modulation of functional properties of galectin-3 by monoclonal antibodies binding to the non-lectin domains, Biochemistry 35, 6073-9 (1996).

    Google Scholar 

  48. Follin P, Briheim G, Dahlgren C, Mechanisms in neutrophil priming: Characterization of the oxidative response induced by formylmethionyl-leucyl-phenylalanine in human exudated cells, Scand J Immunol 34, 317-22 (1991).

    Google Scholar 

  49. Follin P, Wymann MP, Dewald B, Ceska M, Dahlgren C, Human neutrophil migration into skin chambers is associated with production of NAP-1/IL8 and C5a, Eur J Haematol 47, 71-6 (1991).

    Google Scholar 

  50. Bellavite P, Carletto A, Biasi D, Caramaschi P, Poli F, Suttora F, Bambara LM, Studies of skin-windowexudate human neutrophils: Complex patterns of adherence to serum-coated surfaces in dependence on FMLP doses, Inflammation 18, 575-87 (1994).

    Google Scholar 

  51. Watson F, Edwards SW, Stimulation of primed neutrophils by soluble immune complexes: Priming leads to enhanced intracellular Ca2+ elevations, activation of phospholipase D, and activation of the NADPH oxidase, Biochem Biophys Res Commun 247, 819-26 (1998).

    Google Scholar 

  52. Hallett MB, Lloyds D, Neutrophil priming: The cellular signals that say ‘amber’ but not ‘green’, Immunol Today 16, 264-8 (1995).

    Google Scholar 

  53. Sengeløv H, Follin P, Kjeldsen L, Lollike K, Dahlgren C, Borregaard N, Mobilization of granules and secretory vesicles during in vivo exudation of human neutrophils, J Immunol 154, 4157-65 (1995).

    Google Scholar 

  54. Borregaard N, Lollike K, Kjeldsen L, Sengeløv H, Bastholm L, Nielsen MH, Bainton DF, Human neutrophil granules and secretory vesicles, Eur J Haematol 51, 187-98 (1993).

    Google Scholar 

  55. Almkvist J, Fäldt J, Dahlgren C, Leffler H, Karlsson A, Lipopolysaccharide-induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl-leu-phe, Infect Immun 69, 832-7 (2001).

    Google Scholar 

  56. Dong S, Hughes RC, Galectin-3 stimulates uptake of extracellular Ca2+ in human Jurkat T-cells, FEBS Lett 395, 165-9 (1996).

    Google Scholar 

  57. Dong S, Hughes RC, Macrophage surface glycoproteins binding to galectin-3 (Mac-2-antigen), Glycoconj J 14, 267-74 (1997).

    Google Scholar 

  58. Sarafian V, Jadot M, Foidart JM, Letesson JJ, Van den Brule F, Castronovo V, Wattiaux R, Coninck SW, Expression of Lamp-1 and Lamp-2 and their interactions with galectin-3 in human tumor cells, Int J Cancer 75, 105-11 (1998).

    Google Scholar 

  59. Inohara H, Raz A, Identification of human melanoma cellular and secreted ligands for galectin-3, Biochem Biophys Res Commun 201, 1366-75 (1994).

    Google Scholar 

  60. Rosenberg I, Cherayil BJ, Isselbacher KJ, Pillai S, Mac-2-binding glycoproteins. Putative ligands for a cytosolic beta-galactoside lectin, J Biol Chem 266, 18731-6 (1991).

    Google Scholar 

  61. Ohannesian DW, Lotan D, Thomas P, Jessup JM, Fukuda M, Gabius HJ, Lotan R, Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells, Cancer Res 55, 2191-9 (1995).

    Google Scholar 

  62. Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A, Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils, J Immunol 163, 5592-8 (1999).

    Google Scholar 

  63. Avni O, Pur Z, Yefenof E, Baniyash M, Complement receptor 3 of macrophages is associated with galectin-1-like protein, J Immunol 160, 6151-8 (1998).

    Google Scholar 

  64. Serrander L, Larsson J, Lundqvist H, Lindmark M, Fällman M, Dahlgren C, Stendahl O, Particles binding beta(2)-integrins mediate intracellular production of oxidative metabolites in human neutrophils independently of phagocytosis, Biochim Biophys Acta 1452, 133-44 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Karlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almkvist, J., Karlsson, A. Galectins as inflammatory mediators. Glycoconj J 19, 575–581 (2002). https://doi.org/10.1023/B:GLYC.0000014088.21242.e0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GLYC.0000014088.21242.e0

Navigation