Skip to main content

Advertisement

Log in

Caspase-6 mediated cleavage of guanylate cyclase alpha 1 during deoxycholate-induced apoptosis: Protective role of the nitric oxide signaling module

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Hydrophobic bile acids such as deoxycholate are known tumor promoters in the gastrointestinal tract. We have previously shown that deoxycholate induces apoptosis in colon epithelial cells and that these cells can be made resistant to deoxycholate-induced apoptosis. We now show that the nitric oxide synthase/nitric oxide/guanylate cyclase/cyclic guanosine monophosphate/cGMP-activated protein kinase (NOS/NO/GC/cGMP/PKG) signaling module contributes, in part, to the observed resistance of the cultured DOC-resistant colon epithelial cells (HCT-116R) using pharmacological inhibitors/antagonists (NS2028, Rp-8pCPT-cGMP, KT5823) of members of this signaling module. A novel finding from this study is the caspase-6 mediated cleavage of guanylate cyclase alpha 1 during deoxycholate-induced apoptosis of deoxycholate-sensitive HCT-116SA cells and the absence of guanylate cyclase alpha 1 cleavage in deoxycholate-treated HCT-116R resistant cells using Western blot analyses. This cleavage was specific to caspases as lysosomal, proteasomal, serine protease, cathepsin and calpain inhibitors failed to prevent the cleavage, whereas a general caspase inhibitor and a specific caspase-6 inhibitor did prevent guanylate cyclase alpha 1 cleavage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn B, Ohshima H. Suppression of intestinal polyposis in Apc(Min/+) mice by inhibiting nitric oxide production. Cancer Res. 2001;61:8357–60.

    Google Scholar 

  • Ammendola A, Geiselhoringer A, Hofmann F, Schlossmann J. Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta. J Biol Chem. 2001;276:24153–9.

    Google Scholar 

  • Bernstein C, Bernstein H, Garewal H, et al. A bile acid-induced apoptosis assay for colon cancer risk and associated quality control studies. Cancer Res. 1999a;59:2353–7.

    Google Scholar 

  • Bernstein C, Bernstein H, Payne CM, Garewal H. Field defects in progression to adenocarcinoma of the colon and esophagus. Electronic J Biotechnol. 2000;3:1–17.

    Google Scholar 

  • Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res. 2002a;511:145–78.

    Google Scholar 

  • Bernstein H, Payne CM, Bernstein C, Schneider J, Beard SE, Crowley CL. Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett. 1999b;108:37–46.

    Google Scholar 

  • Bernstein H, Holubec H, Warneke JA, et al. Patchy field defects of apoptosis resistance and dedifferentiation in flat mucosa of colon resections from colon cancer patients. Ann Surg Oncol. 2002b;9:505–17.

    Google Scholar 

  • Brown GC, Cooper CE. Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase. FEBS Lett. 1994;356:295–8.

    Google Scholar 

  • Brunetti M, Mascetra N, Manarini S, et al. Inhibition of cGMP-dependent protein kinases potently decreases neutrophil spontaneous apoptosis. Biochem Biophys Res Commun. 2002;297:498–501.

    Google Scholar 

  • Butt E, Eigenthaler M, Genieser HG. (Rp)-8-pCPT-cGMPS, a novel cGMP-dependent protein kinase inhibitor. Eur J Pharmacol. 1994;269:265–8.

    Google Scholar 

  • Calmels S, Hainaut P, Ohshima H. Nitric oxide induces conformational and functional modifications of wild-type p53 tumor suppressor protein. Cancer Res. 1997;57:3365–9.

    Google Scholar 

  • Casteel DE, Zhuang S, Gudi T, et al. cGMP-dependent protein kinase I beta physically and functionally interacts with the transcriptional regulator TFII-I. J Biol Chem. 2002;277:32003–14.

    Google Scholar 

  • Chai F, Truong-Tran AQ, Ho LH, Zalewski PD. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: a review. Immunol Cell Biol. 1999;77:272–8.

    Google Scholar 

  • Chai F, Truong-Tran AQ, Evdokiou A, Young GP, Zalewski PD. Intracellular zinc depletion induces caspase activation and p21 Waf1/Cip1 cleavage in human epithelial cell lines. J Infect Dis. 2000;182(Suppl 1):S85–92.

    Google Scholar 

  • Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev. 2000;64:821–46.

    Google Scholar 

  • Cherbonnel-Lasserre C, Gauny S, Kronenberg A. Suppression of apoptosis by Bcl-2 or Bcl-xL promotes susceptibility to mutagenesis. Oncogene. 1996;13:1489–97.

    Google Scholar 

  • Cherbonnel-Lasserre C, Dosanjh MK. Suppression of apoptosis by overexpression of Bcl-2 or Bcl-xL promotes survival and mutagenesis after oxidative damage. Biochimie. 1997;79:613–7.

    Google Scholar 

  • Chimienti F, Seve M, Richard S, Mathieu J, Favier A. Role of cellular zinc in programmed cell death: temporal relationship between zinc depletion, activation of caspases, and cleavage of Sp family transcription factors. Biochem Pharmacol. 2001;62:51–62.

    Google Scholar 

  • Chisaki K, Nakajima T, Iwasawa K, et al. Enhancement of endothelial nitric oxide production by chenodeoxycholic acids in patients with hepatobiliary diseases. Jpn Heart J. 2001;42:339–53.

    Google Scholar 

  • Choi YH, Im EO, Suh H, et al. Apoptotic activity of novel bile acid derivatives in human leukemic T cells through the activation of caspases. Int J Oncol. 2001;18:979–84.

    Google Scholar 

  • Cleeter MW, Cooper JM, Darley-Usmar VM, Moncada S, Schapira AH. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. FEBS Lett. 1994;345:50–4.

    Google Scholar 

  • Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA. 1998;95:7631–6.

    Google Scholar 

  • Colon AL, Menchen L, Lizasoain I, et al. Inducible nitric oxide synthase activity is expressed not only in inflamed but also in normal colonic mucosa in patients with ulcerative colitis: a potential prognostic marker. Am J Gastroenterol. 2000;95:1371–3.

    Google Scholar 

  • Cornwell TL, Lincoln TM. Regulation of intracellular Ca2+ levels in cultured vascular smooth muscle cells. Reduction of Ca2+ by atriopeptin and 8-bromo-cyclic GMP is mediated by cyclic GMP-dependent protein kinase. J Biol Chem. 1989;264:1146–55.

    Google Scholar 

  • Crowley CL, Payne CM, Bernstein H, Bernstein C, Roe D. The NAD+ precursors, nicotinic acid and nicotinamide protect cells against apoptosis induced by a multiple stress inducer, deoxycholate. Cell Death Differ. 2000;7:314–26.

    Google Scholar 

  • Crowley-Weber CL, Payne CM, Gleason-Guzman M, et al. Development and molecular characterization of HCT-116 cell lines resistant to the tumor promoter and multiple stress-inducer, deoxycholate. Carcinogenesis. 2002;23:2063–80.

    Google Scholar 

  • Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998;12:1551–70.

    Google Scholar 

  • Davis KL, Martin E, Turko IV, Murad F. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol. 2001;41:203–36.

    Google Scholar 

  • Debruyne PR, Bruyneel EA, Li X, Zimber A, Gespach C, Mareel MM. The role of bile acids in carcinogenesis. Mutat Res. 2001;480–481:359–69.

    Google Scholar 

  • Di Fulvio M, Lincoln TM, Lauf PK, Adragna NC. Protein kinase G regulates potassium chloride cotransporter-3 expression in primary cultures of rat vascular smooth muscle cells. J Biol Chem. 2001;276:21046–52.

    Google Scholar 

  • Earnest DL, Holubec H, Wali RK, et al. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res. 1994;54:5071–4.

    Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem. 1999;68:383–424.

    Google Scholar 

  • Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411:342–8.

    Google Scholar 

  • Fischer U, Janicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 2003;10:76–100.

    Google Scholar 

  • Ganster RW, Taylor BS, Shao L, Geller DA. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci USA. 2001;98:8638–43.

    Google Scholar 

  • Garewal H, Bernstein H, Bernstein C, Sampliner R, Payne C. Reduced bile acid-induced apoptosis in “normal” colorectal mucosa: a potential biological marker for cancer risk. Cancer Res. 1996;56:1480–3.

    Google Scholar 

  • Giannakis C, Forbes IJ, Zalewski PD. Ca2+/Mg(2+)-dependent nuclease: tissue distribution, relationship to internucleosomal DNA fragmentation and inhibition by Zn2+. Biochem Biophys Res Commun. 1991;181:915–20.

    Google Scholar 

  • Glinghammar B, Inoue H, Rafter JJ. Deoxycholic acid causes DNA damage in colonic cells with subsequent induction of caspases, COX-2 promoter activity and the transcription factors NF-kB and AP-1. Carcinogenesis. 2002;23:839–45.

    Google Scholar 

  • Grossmann J, Mohr S, Lapentina EG, Fiocchi C, Levine AD. Sequential and rapid activation of select caspases during apoptosis of normal intestinal epithelial cells. Am J Physiol. 1998;274:G1117–24.

    Google Scholar 

  • Gumpricht E, Dahl R, Yerushalmi B, Devereaux MW, Sokol RJ. Nitric oxide ameliorates hydrophobic bile acid-induced apoptosis in isolated rat hepatocytes by non-mitochondrial pathways. J Biol Chem. 2002;277:25823–30.

    Google Scholar 

  • Han SS, Keum YS, Seo HJ, Surh YJ. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Mol Biol. 2002;35:337–42.

    Google Scholar 

  • Hao XP, Pretlow TG, Rao JS, Pretlow TP. Inducible nitric oxide synthase (iNOS) is expressed similarly in multiple aberrant crypt foci and colorectal tumors from the same patients. Cancer Res. 2001;61:419–22.

    Google Scholar 

  • Hickman JA. Apoptosis and tumourigenesis. Curr Opin Genet Dev. 2002;12:67–72.

    Google Scholar 

  • Hirose Y, Rao CV, Reddy BS. Modulation of inducible nitric oxide synthase expression in rat intestinal cells by colon tumor promoters. Int J Oncol. 2001;18:141–6.

    Google Scholar 

  • Hussain SP, Amstad P, Raja K, et al. Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res. 2000;60:3333–7.

    Google Scholar 

  • Invernizzi P, Salzman AL, Szabo C, Ueta I, O'Connor M, Setchell KD. Ursodeoxycholate inhibits induction of NOS in human intestinal epithelial cells and in vivo. Am J Physiol. 1997;273:G131–8.

    Google Scholar 

  • Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002;108:153–64.

    Google Scholar 

  • Jones B, Roberts PJ, Faubion WA, Kominami E, Gores GJ. Cystatin A expression reduces bile salt-induced apoptosis in a rat hepatoma cell line. Am J Physiol. 1998;275:G723–30.

    Google Scholar 

  • Kosarikov DN, Young P, Uversky VN, Gerber NC. Human soluble guanylate cyclase: functional expression, purification and structural characterization. Arch Biochem Biophys. 2001;388:185–97.

    Google Scholar 

  • Kroncke KD, Fehsel K, Schmidt T, et al. Nitric oxide destroys zinc-sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun. 1994;200:1105–10.

    Google Scholar 

  • Kroncke KD. Cysteine-Zn2+ complexes: unique molecular switches for inducible nitric oxide synthase-derived NO. FASEB J. 2001;15:2503–7.

    Google Scholar 

  • Kwo P, Patel T, Bronk SF, Gores GJ. Nuclear serine protease activity contributes to bile acid-induced apoptosis in hepatocytes. Am J Physiol. 1995;268:G613–21.

    Google Scholar 

  • Lagares-Garcia JA, Moore RA, Collier B, Heggere M, Diaz F, Qian F. Nitric oxide synthase as a marker in colorectal carcinoma. Am Surg. 2001;67:709–13.

    Google Scholar 

  • Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol. 2001;2:149–56.

    Google Scholar 

  • Lander HM, Ogiste JS, Pearce SF, Levi R, Novogrodsky A. Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J Biol Chem. 1995;270:7017–20.

    Google Scholar 

  • Lander HM, Hajjar DP, Hempstead BL, et al. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem. 1997;272:4323–6.

    Google Scholar 

  • Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun. 1997;240:419–24.

    Google Scholar 

  • Luhrs H, Gerke T, Muller JG, et al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand J Gastroenterol. 2002a;37:458–66.

    Google Scholar 

  • Luhrs H, Kudlich T, Neumann M, et al. Butyrate-enhanced TNFalpha-induced apoptosis is associated with inhibition of NF-kappaB. Anticancer Res. 2002b;22:1561–8.

    Google Scholar 

  • Mahmoud NN, Dannenberg AJ, Bilinski RT, et al. Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis. 1999;20:299–303.

    Google Scholar 

  • Mahoney JA, Odin JA, White SM, et al. The human homologue of the yeast polyubiquitination factor Ufd2p is cleaved by caspase 6 and granzyme B during apoptosis. Biochem J. 2002;361:587–95.

    Google Scholar 

  • Nara M, Dhulipala PD, Ji GJ, et al. Guanylyl cyclase stimulatory coupling to K(Ca) channels. Am J Physiol Cell Physiol. 2000;279:C1938–45.

    Google Scholar 

  • Narisawa T, Magadia NE, Weisburger JH, Wynder EL. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats. J Natl Cancer Inst. 1974;53:1093–7.

    Google Scholar 

  • Narisawa T, Reddy BS, Weisburger JH. Effect of bile acids and dietary fat on large bowel carcinogenesis in animal models. Gastroenterol Jpn. 1978;13:206–12.

    Google Scholar 

  • Nicholson DW. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 1999;6:1028–42.

    Google Scholar 

  • Nunez G, Benedict MA, Hu Y, Inohara N. Caspases: the proteases of the apoptotic pathway. Oncogene. 1998;17:3237–45.

    Google Scholar 

  • Nyormoi O, Wang Z, Doan D, Ruiz M, McConkey D, Bar-Eli M. Transcription factor AP-2alpha is preferentially cleaved by caspase 6 and degraded by proteasome during tumor necrosis factor alpha-induced apoptosis in breast cancer cells. Mol Cell Biol. 2001;21:4856–67.

    Google Scholar 

  • Olesen SP, Drejer J, Axelsson O, et al. Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. Br J Pharmacol. 1998;123:299–309.

    Google Scholar 

  • Payne CM, Bjore CG, Jr., Schultz DA. Change in the frequency of apoptosis after low-and high-dose X-irradiation of human lymphocytes. J Leukoc Biol. 1992;52:433–40.

    Google Scholar 

  • Payne CM, Bernstein C, Bernstein H. Apoptosis overview emphasizing the role of oxidative stress, DNA damage and signal-transduction pathways. Leuk Lymphoma. 1995a;19:43–93.

    Google Scholar 

  • Payne CM, Bernstein H, Bernstein C, Garewal H. Role of apoptosis in biology and pathology: resistance to apoptosis in colon carcinogenesis. Ultrastruct Pathol. 1995b;19:221–48.

    Google Scholar 

  • Payne CM, Crowley C, Washo-Stultz D, et al. The stress-response proteins poly(ADP-ribose) polymerase and NF-kappaB protect against bile salt-induced apoptosis. Cell Death Differ. 1998;5:623–36.

    Google Scholar 

  • Payne CM, Bernstein C, Bernstein H, Gerner EW, Garewal H. Reactive nitrogen species in colon carcinogenesis. Antioxid Redox Signal. 1999;1:449–67.

    Google Scholar 

  • Payne CM, Bernstein H, Bernstein C, Kunke K, Garewal H. The specific NOS2 inhibitor, 1400W, sensitizes HepG2 cells to genotoxic, oxidative, xenobiotic, and endoplasmic reticulum stresses. Antioxid Redox Signal. 2001;3:931–6.

    Google Scholar 

  • Perry DK, Smyth MJ, Stennicke HR, et al. Zinc is a potent inhibitor of the apoptotic protease, caspase-3. A novel target for zinc in the inhibition of apoptosis. J Biol Chem. 1997;272:18530–3.

    Google Scholar 

  • Rachmilewitz D, Stamler JS, Bachwich D, Karmeli F, Ackerman Z, Podolsky DK. Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Gut. 1995;36:718–23.

    Google Scholar 

  • Reddy BS, Watanabe K, Weisburger JH, Wynder EL. Promoting effect of bile acids in colon carcinogenesis in germ-free and conventional F344 rats. Cancer Res. 1977;37:3238–42.

    Google Scholar 

  • Reed JC. Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol. 1999;11:68–75.

    Google Scholar 

  • Renganathan M, Cummins TR, Waxman SG. Nitric oxide blocks fast, slow, and persistent Na+ channels in C-type DRG neurons by S-nitrosylation. J Neurophysiol. 2002;87:761–75.

    Google Scholar 

  • Roberts LR, Kurosawa H, Bronk SF, et al. Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology. 1997;113:1714–26.

    Google Scholar 

  • Roberts LR, Adjei PN, Gores GJ. Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem Biophys. 1999;30:71–88.

    Google Scholar 

  • Rosen A, Casciola-Rosen L. Macromolecular substrates for the ICE-like proteases during apoptosis. J Cell Biochem. 1997;64:50–4.

    Google Scholar 

  • Ruchaud S, Korfali N, Villa P, et al.Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J. 2002;21:1967–77.

    Google Scholar 

  • Saintigny Y, Dumay A, Lambert S, Lopez BS. A novel role for the Bcl-2 protein family: specific suppression of the RAD51 recombination pathway. EMBO J. 2001;20:2596–607.

    Google Scholar 

  • Schlossmann J, Ammendola A, Ashman K, et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature. 2000;404:197–201.

    Google Scholar 

  • Schlottman K, Wachs FP, Krieg RC, Kullmann F, Scholmerich J, Rogler G. Characterization of bile salt-induced apoptosis in colon cancer cell lines. Cancer Res. 2000;60:4270–6.

    Google Scholar 

  • Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R. Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett. 1999;442:117–21.

    Google Scholar 

  • Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun. 1992;17:221–37.

    Google Scholar 

  • Schwartz IF, Hershkovitz R, Iaina A, et al. Garlic attenuates nitric oxide production in rat cardiac myocytes through inhibition of inducible nitric oxide synthase and the arginine transporter CAT-2 (cationic amino acid transporter-2). Clin Sci (Lond). 2002;102:487–93.

    Google Scholar 

  • Seril DN, Liao J, Ho KL, Warsi A, Yang CS, Yang GY. Dietary iron supplementation enhances DSS-induced colitis and associated colorectal carcinoma development in mice. Dig Dis Sci. 2002;47:1266–78.

    Google Scholar 

  • Silva JM, Lewis DL. Nitric oxide enhances Ca(2+)-dependent K(+) channel activity in rat carotid body cells. Pflugers Arch. 2002;443:671–5.

    Google Scholar 

  • Slee EA, Adrain C, Martin SJ. Executioner caspase-3,-6, and-7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276:7320–6.

    Google Scholar 

  • Stennicke HR, Salvesen GS. Biochemical characteristics of caspases-3,-6,-7, and-8. J Biol Chem. 1997;272:25719–23.

    Google Scholar 

  • Stevens RH, Loven DP, Osborne JW, Lawson AJ. Adenosine 3′,5′-cyclic monophosphate and guanosine 3′,5′-cyclic monophosphate phosphodiesterase activities in 1,2-dimethylhydrazine induced colon adenocarcinoma. Cancer Lett. 1979;7:227–34.

    Google Scholar 

  • Stroh C, Schulze-Osthoff K. Death by a thousand cuts: an ever increasing list of caspase substrates. Cell Death Differ. 1998;5:997–1000.

    Google Scholar 

  • Strupp W, Weidinger G, Scheller C, et al. Treatment of cells with detergent activates caspases and induces apoptotic cell death. J Membr Biol. 2000;175:181–9.

    Google Scholar 

  • Szaleczky E, Pronai L, Nakazawa H, Tulassay Z. Evidence of in vivo peroxynitrite formation in patients with colorectal carcinoma, higher plasma nitrate/nitrite levels, and lower protection against oxygen free radicals. J Clin Gastroenterol. 2000;30:47–51.

    Google Scholar 

  • Takahashi M, Fukuda K, Ohata T, Sugimura T, Wakabayashi K. Increased expression of inducible and endothelial constitutive nitric oxide synthases in rat colon tumors induced by azoxymethane. Cancer Res. 1997;57:1233–7.

    Google Scholar 

  • Takebayashi M. Promoting effect of bile acids on gastric carcinogenesis induced by MNNG in rats. Nippon Geka Gakkai Zasshi. 1989;90:49–58.

    Google Scholar 

  • Takuma K, Phuagphong P, Lee E, Mori K, Baba A, Matsuda T. Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem. 2001;276:48093–9.

    Google Scholar 

  • Thornberry NA, Lazebnik Y. Caspases: enemies within. Science. 1998;281:1312–6.

    Google Scholar 

  • Torriglia A, Chaudun E, Courtois Y, Counis MF. On the use of Zn2+ to discriminate endonucleases activated during apoptosis. Biochimie. 1997;79:435–8.

    Google Scholar 

  • Utz PJ, Anderson P. Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules. Cell Death Differ. 2000;7:589–602.

    Google Scholar 

  • Wan G, Kato N, Watanabe H. High fat diet elevates the activity of inducible nitric oxide synthase and 1,2-dimethylhydrazine-induced aberrant crypt foci in colon of rats. Oncol Rep. 2000;7:391–5.

    Google Scholar 

  • Wang JY, Guo JS, Li H, Liu SL, Zern MA. Inhibitory effect of glycyrrhizin on NF-kappaB binding activity in CC14-plus ethanol-induced liver cirrhosis in rats. Liver. 1998;18:180–5.

    Google Scholar 

  • Wang Y, Vodovotz Y, Kim PK, Zamora R, Billiar TR. Mechanisms of hepatoprotection by nitric oxide. Ann NY Acad Sci. 2002;962:415–22.

    Google Scholar 

  • Washo-Stultz D, Hoglen N, Bernstein H, Bernstein C, Payne CM. Role of nitric oxide and peroxynitrite in bile salt-induced apoptosis: relevance to colon carcinogenesis. Nutr Cancer. 1999;35:180–8.

    Google Scholar 

  • Washo-Stultz D, Crowley C, Payne CM, Bernstein C, Marek S, Gerner EW, Bernstein H. Increased susceptibility of cells to inducible apoptosis during growth from early to late log phase: an important caveat for in vitro apoptosis research. Toxicol Lett. 2000;116:199–207.

    Google Scholar 

  • Washo-Stultz D, Crowley-Weber CL, Dvorakova K, et al. Role of mitochondrial complexes I and II, reactive oxygen species and arachidonic acid metabolism in deoxycholate-induced apoptosis. Cancer Lett. 2002;177:129–44.

    Google Scholar 

  • Widlak P, Garrard WT. Ionic and cofactor requirements for the activity of the apoptotic endonuclease DFF40/CAD. Mol Cell Biochem. 2001;218:125–30.

    Google Scholar 

  • Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. A turn-off mechanism for anti-apoptotic signals. J Biol Chem. 1998;273:7141–7.

    Google Scholar 

  • Xie QW, Kashiwabara Y, Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994;269:4705–8.

    Google Scholar 

  • Xu W, Liu L, Smith GC, Charles G. Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging anti-tumour agents. Nat Cell Biol. 2000;2:339–45.

    Google Scholar 

  • Yagihashi N, Kasajima H, Sugai S, et al. Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch. 2000;436:109–14.

    Google Scholar 

  • Zamora R, Alarcon L, Vodovotz Y, et al.Nitric oxide suppresses the expression of Bcl-2 binding protein BNIP3 in hepatocytes. J Biol Chem. 2001;276:46887–95.

    Google Scholar 

  • Zingarelli B, Hake PW, Denenberg A, Wong HR. Sesquiterpene lactone parthenolide, an inhibitor of IkappaB kinase complex and nuclear factor-kappaB, exerts beneficial effects in myocardial reperfusion injury. Shock. 2002;17:127–34.

    Google Scholar 

  • Zornig M, Hueber A, Baum W, Evan G. Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta. 2001;1551:F1–37.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.M. Payne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, C., Waltmire, C., Crowley, C. et al. Caspase-6 mediated cleavage of guanylate cyclase alpha 1 during deoxycholate-induced apoptosis: Protective role of the nitric oxide signaling module. Cell Biol Toxicol 19, 373–392 (2003). https://doi.org/10.1023/B:CBTO.0000013331.70391.0e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CBTO.0000013331.70391.0e

Navigation