Skip to main content

Advertisement

Log in

Quantitative Analysis of Human Immunodeficiency Virus Type 1 DNA Dynamics by Real-Time PCR: Integration Efficiency in Stimulated and Unstimulated Peripheral Blood Mononuclear Cells

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

We established a set of real-time PCR assay to accurately quantify human immunodeficiency virus type 1 (HIV-1) DNA in infected cells. Using this assay we were able to measure the strong-stop, full-length/ 1-LTR circle, 2-LTR circle, and integrated forms of viral DNA, and the data provided was quite consistent with the characteristics of mutant viruses in early phase of infection. Since our assay is particularly applicable to quantify the integrated DNA in small scale of samples, we measured the level of integrated DNA in wild-type virus (WT)- or Vpr-defective virus (ΔVpr)-infected peripheral blood mononuclear cells (PBMC), and examined whether quiescent condition of the PBMC influences integration step of HIV-1. Under stimulating condition approximately 25% of total viral DNA was in integrated form in either WT- or ΔVpr-infected cells. In contrast, under unstimulated condition the level of integration efficiency was not significantly reduced in WT-infected cells, while this efficiency was severely impaired in the absence of vpr gene. This result clearly demonstrated a crucial role of the Vpr for nuclear localization and subsequent integration of viral DNA in nondividing cells. Therefore, our assay is useful for analyzing the events in early phase of HIV-1 infection under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flint S.J., Enquist J.W., Krug R.M., Racaniello V.R., and Skalka A.M., Principles of Virology, American Society of Microbiology, Washington, DC, 2000, pp. 199-234.

    Google Scholar 

  2. Heinzinger N.K., Bukinsky M.I., Haggerty S.A., Ragland A.M., Kewalramani V., Lee M.A., Gendelman H.E., Ratner L., Stevenson M., and Emerman M., Proc Natl Acad Sci USA 91, 7311-7315, 1994.

    Google Scholar 

  3. Miller M.D., Farnet C.M., and Bushman F.D., J Virol 71, 5382-5390, 1997.

    Google Scholar 

  4. Chen H. and Engelman A., Proc Natl Acad Sci USA 95, 15270-15274, 1998.

    Google Scholar 

  5. Farnet C.M. and Bushman F.D., Cell 88, 483-492, 1997.

    Google Scholar 

  6. Sharkey M.E., Teo I., Greenough T., Sharova N., Luzuriaga K., Sullivan J.L., Bucy R.P., Kostrikis L.G., Haase A., Veryard C., Davaro R.E., Cheeseman S.H., Daly J.S., Bova C., Ellison R.T., III Mady B., Lai K.K., Moyle G., Nelson M., Gazzard B., Shaunak S., and Stevenson M., Nat Med 6, 76-81, 2000.

    Google Scholar 

  7. Kim S.Y., Byrn R., Groopman J., and Baltimore D., J Virol 63, 3708-3713, 1989.

    Google Scholar 

  8. Schmidtmayerova H., Alfano M., Nuovo G., and Bukrinsky M., J Virol 72, 4633-4642, 1998.

    Google Scholar 

  9. Pang S., Koyanagi Y., Miles S., Wiley C., Vinters H.V., and Chen I.S., Nature 343, 85-89, 1990.

    Google Scholar 

  10. Zack J.A., Arrigo S.J., Weitsman S.R., Go A.S., Haislip A., and Chen I.S., Cell 61, 213-222, 1990.

    Google Scholar 

  11. Chun T.W., Stuyver L., Mizell S.B., Ehler L.A., Mican J.A., Baseler M., Lloyd A.L., Nowak M.A., and Fauci A.S., Proc Natl Acad Sci USA 94, 13193-13197, 1997.

    Google Scholar 

  12. Heid C.A., Stevens J., Livak K.J., and Williams P.M., Genome Res 6, 986-994, 1996.

    Google Scholar 

  13. Butler S.L., Hansen M.S., and Bushman F.D., Nat Med 7, 631-634, 2001.

    Google Scholar 

  14. Lewin S.R., Vesanen M., Kostrikis L., Hurley A., Duran M., Zhang L., Ho D.D., and Markowitz M., J Virol 73, 6099-6103, 1999.

    Google Scholar 

  15. Tsurutani N., Kubo M., Maeda Y., Ohashi T., Yamamoto N., Kannagi M., and Masuda T., J Virol 74, 4795-4806, 2000.

    Google Scholar 

  16. Fear W.R., Kesson A.M., Naif H., Lynch G.W., and Cunningham A.L., J Virol 72, 1334-1344, 1998.

    Google Scholar 

  17. Sonza S., Maerz A., Deacon N., Meanger J., Mills J., and Crowe S., J Virol 70, 3863-3869, 1996.

    Google Scholar 

  18. Connor R.I., Chen B.K., Choe S., and Landau N.R., Virology 206, 935-944, 1995.

    Google Scholar 

  19. Freed E.O., Englund G., and Martin M.A., J Virol 69, 3949-3954, 1995.

    Google Scholar 

  20. Harada S., Koyanagi Y., and Yamamoto N., Science 229, 563-566, 1985.

    Google Scholar 

  21. Masuda T., Planelles V., Krogstad P., and Chen I.S., J Virol 69, 6687-6696, 1995.

    Google Scholar 

  22. Akkina R.K., Walton R.M., Chen M.L., Li Q.X., Planelles V., and Chen I.S., J Virol 70, 2581-2585, 1996.

    Google Scholar 

  23. Kawano Y., Tanaka Y., Misawa N., Tanaka R., Kira J.I., Kimura T., Fukushi M., Sano K., Goto T., Nakai M., Kobayashi T., Yamamoto N., and Koyanagi Y., J Virol 71, 8456-8466, 1997.

    Google Scholar 

  24. Adachi A., Gendelman H.E., Koenig S., Folks T., Willey R., Rabson A., and Martin M.A., J Virol 59, 284-291, 1986.

    Google Scholar 

  25. Miyoshi K., Blomer U., Takahashi M., Gage F.H., and Verma I.M., J Virol 72, 8150-8157, 1998.

    Google Scholar 

  26. Naldini L., Blomer U., Gage F.H., Trono D., and Verma I.M., Proc Natl Acad Sci USA 93, 11382-11388, 1996.

    Google Scholar 

  27. Folks T.M., Clouse K.A., Justement J., Rabson A., Duh E., Kehrl J.H., and Fauci A.S., Proc Natl Acad Sci USA 86, 2365-2368, 1989.

    Google Scholar 

  28. Beerens N., Klaver B., and Berkhout B., J Virol 74, 2227-2238, 2000.

    Google Scholar 

  29. Kimata J.T., Mozaffarian A., and Overbaugh J., J Virol 72, 245-256, 1998.

    Google Scholar 

  30. Shapiro S.Z., Maudru T., and Peden K.W., J Gen Virol 80, 857-861, 1999.

    Google Scholar 

  31. O'Doherty U., Swiggard W.J., Jeyakumar D., McGain D., and Malim M.H., J Virol 76, 10942-10950, 2002.

    Google Scholar 

  32. Vandegraaff N., Kumar R., Burrell C.J., and Li P., J Virol 75, 11253-11260, 2001.

    Google Scholar 

  33. Stevens S.W. and Griffith J.D., Proc Natl Acad Sci USA 91, 5557-5561, 1994.

    Google Scholar 

  34. Masuda T., Kuroda M.J., and Harada S., J Virol 72, 8396-8402, 1998.

    Google Scholar 

  35. Planelles V., Bachelerie F., Jowett J.B., Haislip A., Xie Y., Banooni P., Masuda T., and Chen I.S., J Virol 69, 5883-5889, 1995.

    Google Scholar 

  36. Stewart S.A., Poon B., Jowett J.B., and Chen I.S., J Virol 71, 5579-5592, 1997.

    Google Scholar 

  37. Fouchier R.A. and Malim M.H., Adv Virus Res 52, 275-299, 1999.

    Google Scholar 

  38. Popov S., Rexach M., Zybarth G., Reiling N., Lee M.A., Ratner L., Lane C.M., Moore M.S., Blobel G., and Bukrinsky M., Embo J 17, 909-917, 1998.

    Google Scholar 

  39. Sherman M.P., de Noronha C.M., Heusch M.I., Greene S., and Greene W.C., J Virol 75, 1522-1532, 2001.

    Google Scholar 

  40. Balliet J.W., Kolson D.L., Eiger G., Kim F.M., McGann K.A., Srinivasan A., and Collman R., Virology 200, 623-631, 1994.

    Google Scholar 

  41. Mwaengo D.M. and Novembre F.J., J Virol 72, 8976-8987, 1998.

    Google Scholar 

  42. Fujiwara T. and Mizuuchi K., Cell 54, 497-504, 1988.

    Google Scholar 

  43. Lee M.S. and Craigie R., Proc Natl Acad Sci USA 91, 9823-9827, 1994.

    Google Scholar 

  44. Li L., Farnet C.M., Anderson W.F., and Bushman F.D., J Virol 72, 2125-2131, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Koyanagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Misawa, N., Sato, C. et al. Quantitative Analysis of Human Immunodeficiency Virus Type 1 DNA Dynamics by Real-Time PCR: Integration Efficiency in Stimulated and Unstimulated Peripheral Blood Mononuclear Cells. Virus Genes 27, 177–188 (2003). https://doi.org/10.1023/A:1025732728195

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025732728195

Navigation