Skip to main content
Log in

Cerebrovascular Effects of Amyloid-ß Peptides: Mechanisms and Implications for Alzheimer's Dementia

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The amyloid ß-peptide (Aß) is involved in the mechanisms of Alzheimer dementia. This paper reviews experimental evidence indicating that Aß exerts profound effects on the regulation of the cerebral circulation.

2. Thus, Aß compromises the ability of cerebral endothelial cells to produce vascular relaxing factors, impairs the ability of cerebral blood vessels to maintain adequate flow during hypotension, and attenuates the increases in CBF evoked by enhanced brain activity.

3. Studies in transgenic mice overexpressing the amyloid precursor protein suggest that these cerebrovascular alterations disrupt the delicate balance between the brain's energy requirements and cerebral blood supply, rendering the brain more vulnerable to ischemic injury.

4. The findings support the recently emerged notion that vascular factors play a pathogenic role in the early stages of Alzheimer dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alonzo, N. C., Hyman, B. T., Rebeck, G. W., and Greenberg, S. M. (1998). Progression of cerebral amyloid angiopathy: Accumulation of amyloid-beta40 in affected vessels. J. Neuropathol. Exp. Neurol. 57:353–359.

    PubMed  Google Scholar 

  • Babior, B. M, Aji, W., Ravalli, S., Szabolcs, M., Jiang, X. C., Sciacca, R. R., Michler, R. E., and Cannon, P. J. (1999). NADPH oxidase: An update. Blood 93:1464–1476.

    PubMed  Google Scholar 

  • Behl, C., Davis, J. B., Lesley, R., and Schubert, D. (1994). Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817–827.

    PubMed  Google Scholar 

  • Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M. A., Mazziotta, J. C., and Small, G. W. (2000). Patterns of brain activation in people at risk for Alzheimer's disease. N. Engl. J. Med. 343:450–456.

    PubMed  Google Scholar 

  • Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.) 82:239–259.

    Google Scholar 

  • Brun, A., and Englund, E. (1986). A white matter disorder in dementia of the Alzheimer type: A pathoanatomical study. Ann. Neurol. 19:253–262.

    PubMed  Google Scholar 

  • Cai, H., Harrison, D. G., Rothe, G., and Valet, G. (2000). Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ. Res. 87:840–844.

    PubMed  Google Scholar 

  • Crawford, F., Suo, Z., Fang, C., and Mullan, M. (1998). Characteristics of the in vitro vasoactivity of beta-amyloid peptides. Exp. Neurol. 150:159–168.

    PubMed  Google Scholar 

  • Faraci, F. M., and Heistad, D. D. (1998). Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol. Rev. 78:53–97.

    PubMed  Google Scholar 

  • Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., and Penniman, E. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 373:523–527.

    PubMed  Google Scholar 

  • Glenner, G. G., and Wong, C. W. (1984). Alzheimer's disease and Down's syndrome: Sharing of a unique cerebrovascular amyloid fibril protein. Biochem. Biophys. Res. Commun. 122:1131–1135.

    PubMed  Google Scholar 

  • Good, P. F., Werner, P., Hsu, A., Olanow, C. W., and Perl, D. P. (1996). Evidence of neuronal oxidative damage in Alzheimer's disease. Am. J. Pathol. 149:21–28.

    PubMed  Google Scholar 

  • Griendling, K. K., Minieri, C. A., Ollerenshaw, J. D., and Alexander, R. W. (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 74:1141–1148.

    PubMed  Google Scholar 

  • Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butterfield, D. A. (1994). A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 91:3270–3274.

    PubMed  Google Scholar 

  • Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. (1996). Correlative memory deficits, Aelevation, and amyloid plaques in transgenic mice. Science 274:99–102.

    PubMed  Google Scholar 

  • Hsiao, K. K., Borchelt, D. R., Olson, K., Johannsdottir, R., Kitt, C., Yunis, W., Xu, S., Eckman, C., Younkin, S., Price, D., Iadecola, C., Clark, H. B., and Carlson, G. (1995). Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 15:1203–1218.

    PubMed  Google Scholar 

  • Iadecola, C., Zhang, F., Niwa, K., Eckman, C., Turner, S. K., Fischer, E., Younkin, S., Borchelt, D. R., Hsiao, K. K., and Carlson, G. A. (1999). SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat. Neurosci. 2:157–161.

    PubMed  Google Scholar 

  • Irizarry, M. C., McNamara, M., Fedorchak, K., Hsiao, K., and Hyman, B. T. (1997). APPSW transgenic mice develop age-related A beta deposits and neuropil abnormalities, but no neuronal loss in CA1. J. Neuropathol. Exp. Neurol. 56:965–973.

    PubMed  Google Scholar 

  • Jagust, W. J., Eberling, J. L., Reed, B. R., Mathis, C. A., and Budinger, T. F. (1997). Clinical studies of cerebral blood flow in Alzheimer's disease. Ann. N. Y. Acad. Sci. 826:254–262.

    PubMed  Google Scholar 

  • Jagust, W. J., Haan, M. N., Reed, B. R., and Eberling, J. L. (1998). Brain perfusion imaging predicts survival in Alzheimer's disease. Neurology 51:1009–1013.

    PubMed  Google Scholar 

  • Kalaria, R. N. (1996). Cerebral vessels in ageing and Alzheimer's disease. Pharmacol. Ther. 72:193–214.

    PubMed  Google Scholar 

  • Kawarabayashi, T., Younkin, L. H., Saido, T. C., Shoji, M., Ashe, K. H., and Younkin, S. G. (2001). Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease. J. Neurosci. 21:372–381.

    PubMed  Google Scholar 

  • Le, R., Cruz, L., Urbanc, B., Knowles, R. B., Hsiao-Ashe, K., Duff, K., Irizarry, M. C., Stanley, H. E., and Hyman, B. T. (2001). Plaque-induced abnormalities in neurite geometry in transgenic models of Alzheimer disease: Implications for neural system disruption. J. Neuropathol. Exp. Neurol. 60:753–758.

    PubMed  Google Scholar 

  • Lee, V. M., Goedert, M., and Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24:1121–1159.

    PubMed  Google Scholar 

  • Levy-Lahad, E., and Bird, T. D. (1996). Genetic factors in Alzheimer's disease: A review of recent advances. Ann. Neurol. 40:829–840.

    PubMed  Google Scholar 

  • Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Walencewicz, A. J., and Cotman, C. W. (1993). Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. U.S.A. 90:7951–7955.

    PubMed  Google Scholar 

  • Matsushita, K., Kuriyama, Y., Nagatsuka, K., Nakamura, M., Sawada, T., and Omae, T. (1994). Periventricular white matter lucency and cerebral blood flow autoregulation in hypertensive patients. Hypertension 23:565–568.

    PubMed  Google Scholar 

  • Mattson, M. P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., and Rydel, R. E. (1992). beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12:376–389.

    PubMed  Google Scholar 

  • Mattson, M. P. (1997). Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77:1081–1132.

    PubMed  Google Scholar 

  • Mohazzab-H, K. M., Kaminski, P. M., and Wolin, M. S. (1994). NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am. J. Physiol. 266:H2568-H2572.

    PubMed  Google Scholar 

  • Niwa, K., Carlson, G. A., and Iadecola, C. (2000a). Exogenous A beta1–40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice. J. Cereb. Blood Flow Metab. 20:1659–1668.

    PubMed  Google Scholar 

  • Niwa, K., Kazama, K., Younkin, S. G., Carlson, G. A., and Iadecola, C. (2002a). Alterations in cerebral blood flow and glucose utilization in mice overexpressing the amyloid precursor protein. Neurobiol. Dis. 9:61–68.

    PubMed  Google Scholar 

  • Niwa, K., Kazama, K., Younkin, L., Younkin, S. G., Carlson, G. A., and Iadecola, C. (2002b). Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein. Am. J. Physiol. Heart Circ. Physiol. 283:H315–323.

    PubMed  Google Scholar 

  • Niwa, K., Porter, V. A., Kazama, K., Cornfield, D., Carlson, G. A., and Iadecola, C. (2001). Abeta-peptides enhance vasoconstriction in cerebral circulation. Am. J. Physiol. Heart Circ. Physiol. 281:H2417-H2424.

    PubMed  Google Scholar 

  • Niwa, K., Younkin, L., Ebeling, C., Turner, S. K., Westaway, D., Younkin, S., Ashe, K. H., Carlson, G. A., and Iadecola, C. (2000b). Abeta 1–40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc. Natl. Acad. Sci. U.S.A. 97:9735–9740.

    PubMed  Google Scholar 

  • Price, D. L., and Sisodia, S. S. (1998). Mutant genes in familial Alzheimer's disease and transgenic models. Annu. Rev. Neurosci. 21:479–505.

    PubMed  Google Scholar 

  • Prohovnik, I., Mayeux, R., Sackeim, H. A., Smith, G., Stern, Y., and Alderson, P. O. (1988). Cerebral perfusion as a diagnostic marker of early Alzheimer's disease. Neurology 38:931–937.

    PubMed  Google Scholar 

  • Reiman, E. M., Caselli, R. J., Chen, K., Alexander, G. E., Bandy, D., and Frost, J. (2001). Declining brain activity in cognitively normal apolipoprotein E varepsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 98:3334–3339.

    PubMed  Google Scholar 

  • Selkoe, D. J. (2001). Alzheimer's disease: Genes, proteins, and therapy. Physiol. Rev. 81:741–766.

    PubMed  Google Scholar 

  • Shimohama, S., Tanino, H., Kawakami, N., Okamura, N., Kodama, H., Yamaguchi, T., Hayakawa, T., Nunomura, A., Chiba, S., Perry, G., Smith, M. A., and Fujimoto, S. (2000). Activation of NADPH oxidase in Alzheimer's disease brains. Biochem. Biophys. Res. Commun. 273:5–9.

    PubMed  Google Scholar 

  • Simonian, N. A., and Coyle, J. T. (1996). Oxidative stress in neurodegenerative diseases. Annu. Rev. Pharmacol. Toxicol. 36:83–106.

    PubMed  Google Scholar 

  • Small, G. W., Ercoli, L. M., Silverman, D. H., Huang, S. C., Komo, S., Bookheimer, S. Y., Lavretsky, H., Miller, K., Siddarth, P., Rasgon, N. L., Mazziotta, J. C., Saxena, S., Wu, H. M., Mega, M. S., Cummings, J. L., Saunders, A. M., Pericak-Vance, M. A., Roses, A. D., Barrio, J. R., and Phelps, M. E. (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 97:6037–6042.

    PubMed  Google Scholar 

  • Smith, C. D., Andersen, A. H., Kryscio, R. J., Schmitt, F. A., Kindy, M. S., Blonder, L. X., and Avison, M. J. (1999). Altered brain activation in cognitively intact individuals at high risk for Alzheimer's disease. Neurology 53:1391–1396.

    PubMed  Google Scholar 

  • Smith, M. A., Richey, H. P., Sayre, L. M., Beckman, J. S., and Perry, G. (1997). Widespread peroxynitrite-mediated damage in Alzheimer's disease. J. Neurosci. 17:2653–2657.

    PubMed  Google Scholar 

  • Stewart, R., Cai, H., Harrison, D. G., Rothe, G., and Valet, G. (1998). Cardiovascular factors in Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry. 65:143–147

    PubMed  Google Scholar 

  • Thomas, T., Thomas, G., McLendon, C., Sutton, T., and Mullan, M. (1996). ß-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380:168–171.

    PubMed  Google Scholar 

  • Vinters, H. V., Wang, Z. Z., and Secor, D. L. (1996). Brain parenchymal and microvascular amyloid in Alzheimer's disease. Brain Pathol. 6:179–195.

    PubMed  Google Scholar 

  • Wilson, C. A., Doms, R. W., and Lee, V. M. (1999). Intracellular APP processing and A beta production in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58:787–794.

    PubMed  Google Scholar 

  • Wolin, M. S. (2000). Interactions of oxidants with vascular signaling systems. Arterioscler Thromb. Vasc. Biol. 20:1430–1442.

    PubMed  Google Scholar 

  • Yan, S. D., Chen, X., Fu, J., Chen, M., Zhu, H., Roher, A., Slattery, T., Zhao, L., Nagashima, M., Morser, J., Migheli, A., Nawroth, P., Stern, D., and Schmidt, A. M. (1996). RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382:685–691.

    PubMed  Google Scholar 

  • Zhang, F., Eckman, C., Younkin, S., Hsiao, K. K., and Iadecola, C. (1997). Increased susceptibility to ischemic brain damage in transgenic mice overexpressing the amyloid precursor protein. J. Neurosci. 17:7655–7661.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costantino Iadecola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iadecola, C. Cerebrovascular Effects of Amyloid-ß Peptides: Mechanisms and Implications for Alzheimer's Dementia. Cell Mol Neurobiol 23, 681–689 (2003). https://doi.org/10.1023/A:1025092617651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025092617651

Navigation