Skip to main content
Log in

Mitogen-activated protein kinases: A new therapeutic target in cardiac pathology

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Eukaryotic cells respond to different external stimuli by activation of mechanisms of cell signaling. One of the major systems participating in the transduction of signal from the cell membrane to nuclear and other intracellular targets is the highly conserved mitogen-activated protein kinase (MAPK) superfamily. The members of MAPK family are involved in the regulation of a large variety of cellular processes such as cell growth, differentiation, development, cell cycle, death and survival. Several MAPK subfamilies, each with apparently unique signaling pathway, have been identified in the mammalian myocardium. These cascades differ in their upstream activation sequence and in downstream substrate specifity. Each pathway follows the same conserved three-kinase module consisting of MAPK, MAPK kinase (MAPKK, MKK or MEK), and MAPK kinase kinase (MAPKKK, MEKK). The major groups of MAPKs found in cardiac tissue include the extracellular signal-regulated kinases (ERKs), the stress-activated/c-Jun NH2-terminal kinases (SAPK/JNKs), p38-MAPK, and ERK5/big MAPK 1 (BMK1). The ERKs are strongly activated by mitogenic and growth factors and by physical stress, whereas SAPK/JNKs and p38-MAPK can be activated by various cell stresses, such as hyperosmotic shock, metabolic stress or protein synthesis inhibitors, UV radiation, heat shock, cytokines, and ischemia. Activation of MAPKs family plays a key role in the pathogenesis of various processes in the heart, e.g. myocardial hypertrophy and its transition to heart failure, in ischemic and reperfusion injury, as well in the cardioprotection conferred by ischemia- or pharmacologically-induced preconditioning. The following approaches are currently utilized to elucidate the role of MAPKs in the myocardium: (i) studies of the effects of myocardial processes on the activity of these kinases; (ii) pharmacological modulations of MAPKs activity and evaluation of their impact on the (patho)physiological processes in the heart; (iii) gene targeting or expression of constitutively active and dominant-negative forms of enzymes (adenovirus-mediated gene transfer).

This review is focused on the regulatory role of MAPKs in the myocardium, with particular regard to their involvement in pathophysiological processes, such as myocardial hypertrophy and heart failure, ischemia/reperfusion injury, as well as in the mechanisms of cardioprotection. In addition, it summarizes current information on pharmacological modulations of MAPKs activity and their impact on the cardiac response to pathophysiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chien KR, Knowlton KU, Zhu H, Chien S: Regulation of cardiac gene expression during myocardial growth and hypertrophy: Molecular studies of an adaptive physiologic response. FASEB J 5: 3037-3046, 1991

    Google Scholar 

  2. Clerk A, Fuller SJ, Michael A, Sugden PH: Stimulation of 'stress-regulated’ mitogen-activated protein kinases (stress-activated protein kinases/c-Jun N-terminal kinases and p38-mitogen-activated protein kinases) in perfused rat hearts by oxidative and other stresses. J Biol Chem 273: 7228-7334, 1998

    Google Scholar 

  3. Talmor D, Applebaum A, Rudich A, Shapira Y, Tirosh A: Activation of mitogen-activated protein kinases in human heart during cardiopulmonary bypass. Circ Res 86: 1004-1007, 2000

    Google Scholar 

  4. Sanada S, Kitakaze M, Papst PJ, Hatanaka K, Asanuma H, Aki T, Shinozaki Y, Ogita H, Node K, Takashima S, Asakura M, Yamada J, Fukushima T, Ogai A, Kuzuya T, Mori H, Terada N, Yoshida K, Hori M: Role of phasic dynamism of p38 mitogen-activated protein kinase activation in ischemic preconditioning of the canine heart. Circ Res 88: 175-180, 2001

    Google Scholar 

  5. Ping P, Zhang J, Huang S, Cao X, Tang XL, Li RC, Zheng YT, Qiu Y, Clerk A, Sugden P, Han J, Bolli R: PKC-dependent activation of p46/p54 JNKs during ischemic preconditioning in conscious rabbits. Am J Physiol Heart Circ Physiol 277: H1771-H1785, 1999

    Google Scholar 

  6. Strohm C, Barancik M, v. Bruehl ML, Kilian SAR, Schaper W: Inhibition of the ER-Kinase by PD98059 and UO126 counteracts ischemic preconditioning in pig myocardium. J Cardiovasc Pharmacol 36: 218-229, 2000

    Google Scholar 

  7. Tekin D, Xi L, Zhao T, Tejero-Taldo MI, Atluri S, Kukreja RC: Mitogen-activated protein kinases mediate heat shock-induced delayed protection in mouse heart. Am J Physiol Heart Circ Physiol 281: H523-H532, 2001

    Google Scholar 

  8. Robinson MJ, Cobb MH: Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9: 180-186, 1997

    Google Scholar 

  9. Sugden PH, Bogoyevitch MA: Intracellular signalling through protein kinases in the heart. Cardiovasc Res 30: 478-492, 1995

    Google Scholar 

  10. Marshall CJ: MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Review Curr Opin Genet Dev 4: 82-89, 1994

    Google Scholar 

  11. Minden A, Lin A, McMahon M, Lange-Carter C, Dérijard B, Davis RJ, Johnson GL, Karin M: Differential activation of ERK and JNK mitogen-activated protein kinases by Raf-1 and MEKK. Science 266: 1719-1723, 1994

    Google Scholar 

  12. Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ: Integration of MAP kinase signal transduction pathways at the serum response element. Science 269: 403-407, 1995

    Google Scholar 

  13. Lange-Carter CA, Pleiman CE, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315-319, 1993

    Google Scholar 

  14. Stokoe D, Campbell DG, Nakielny S, Hidaka H, Leevers SJ, Marshall C, Cohen P: MAPKAP kinase-2: A novel protein kinase activated by mitogen-activated protein kinase. EMBO J 11: 3985-3994, 1992

    Google Scholar 

  15. Sadoshima J, Qiu Z, Morgan JP, Izumo S: Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosinc kinase, mitogen-activated protein kinase, and 90 kD S6 kinase in cardiac myocytes: The critical role of Ca2+-dependent signaling. Circ Res 76: 1-15, 1995

    Google Scholar 

  16. Domingos PP, Fonseca PM, Nadruz W Jr, Franchini KG: Load-induced focal adhesion kinase activation in the myocardium: Role of stretch and contractile activity. Am J Physiol 282: H556-H564, 2002

    Google Scholar 

  17. Tahara S, Fukuda K, Kodama H, Kato T, Miyoshi S, Ogawa S: Potassium channel blocker activates extracellular signal-regulated kinases through Pyk2 and epidermal growth factor receptor in rat cardiomyocytes. J Am Coll Cardiol 38: 554-563, 2001

    Google Scholar 

  18. Ahn NG, Seger R, Bratlien RL, Diltz CD, Tonks NK, Krebs EG: Multiple components in an epidermal growth factor-stimulated protein kinase cascade. In vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J Biol Chem 266: 4220-4227, 1991

    Google Scholar 

  19. Warne PH, Viciana PR, Downward J: Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364: 352-355, 1993

    Google Scholar 

  20. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR: Protein kinase Cα activates Raf-1 by direct phosphorylation. Nature 364: 249-252, 1993

    Google Scholar 

  21. Cano E, Mahadevan LC: Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20: 117-122, 1995

    Google Scholar 

  22. Reszka AA, Seger R, Diltz CD, Krebs EG, Fischer EH: Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proc Natl Acad Sci USA 92: 8881-8885, 1995

    Google Scholar 

  23. Erikson RL: Structure expression, and regulation of protein kinases involved in the phosphorylation of ribosomal protein S6. J Biol Chem 266: 6007-6010, 1991

    Google Scholar 

  24. Eldar-Finkelman H, Seger R, Vandenheede JR, Krebs EG: Inactivation of glycogen synthase kinase-3 by epidermal growth factor is mediated by mitogen-activated protein kinase/p90 ribosomal protein S6 kinase signaling pathway in NIH/3T3 cells. J Biol Chem 270: 987-990, 1995

    Google Scholar 

  25. Frödin M, Gammeltoft S: Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151: 65-77, 1999

    Google Scholar 

  26. Lin LL, Wartmann M, Lin AY, Knopf JL, Seth A, Davis RJ: cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269-278, 1993

    Google Scholar 

  27. Davis RJ: The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268: 14553-14556, 1993

    Google Scholar 

  28. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys RJ, Landyatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739-746, 1994

    Google Scholar 

  29. Han J, Lee JD, Bibbs L, Ulevitch RJ: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808-811, 1994

    Google Scholar 

  30. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78: 1027-1037, 1994

    Google Scholar 

  31. Sugden PH, Clerk A: 'stress-responsive’ mitogen-activated protein kinases (c-Jun N-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium. Circ Res 83: 345-352, 1998

    Google Scholar 

  32. Zhang S, Han J, Sells MA, Chernoff J, Knaus UG, Ulevitch RJ, Bokoch GM: Rho family GTP-ases regulate p38 mitogen-activated protein kinase through the downstream mediator Pak 1. J Biol Chem 270: 23934-23936, 1995

    Google Scholar 

  33. Bagrodia S, Derijard B, Davis RJ, Cerione RA: Cdc42 and PAK-mediated signaling leads to Jun kinase and p38 mitogen-activated protein kinase activation. J Biol Chem 270: 27995-27998, 1995

    Google Scholar 

  34. Fan G, Merrit SE, Kortenjann M, Shaw PE, Holzman LB: Dual leucine zipper-bearing kinase (DLK) activates p46SAPK and p38 MAPK but not ERK2. J Biol Chem 271: 24788-24793, 1996

    Google Scholar 

  35. Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR, Lassam NJ: MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 15: 7026-7035, 1996

    Google Scholar 

  36. Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S, Hsuan J, Saklatvala J: Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78: 1039-1049, 1994

    Google Scholar 

  37. Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J: Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 110: 357-368, 1997

    Google Scholar 

  38. Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ: FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 15: 4629-4642, 1996

    Google Scholar 

  39. Clerk A, Michael A, Sugden PH: Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: A role in cardiac myocyte hypertrophy? J Cell Biol 142: 523-535, 1998

    Google Scholar 

  40. Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ, Davis RJ: Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: 7420-7426, 1995

    Google Scholar 

  41. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ: Activation of the transcription factor MEF 2C by the MAP kinase p38 in inflammation. Nature 386: 296-299, 1997

    Google Scholar 

  42. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR: Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 670-674, 1991

    Google Scholar 

  43. Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ: JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025-1037, 1994

    Google Scholar 

  44. Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR: The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369: 156-160, 1994

    Google Scholar 

  45. Deacon K, Blank JL: Characterization of the mitogen-activated protein kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK/p38 pathways regulated by MEK kinase 2 and 3: MEK kinase 3 activates MKK3 but does not cause activation of p38 kinase in vivo. J Biol Chem 272: 14489-14496, 1997

    Google Scholar 

  46. Foltz IN, Gerl Re, Wieler JS, Luckach M, Salmon RA, Schrader JW: Human mitogen-activated protein kinase kinase 7 (MKK7) is a highly conserved c-Jun N-terminal kinase/stress-activated protein kinase (SAPK/JNK) activated by environmental stresses and physiological stimuli. J Biol Chem 273: 9344-9351, 1998

    Google Scholar 

  47. Nagao M, Yamauchi J, Kaziro Y, Itoh H: Involvement of protein kinase C and Src family tyrosine kinase in Gαq/11-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J Biol Chem 273: 22892-22898, 1998

    Google Scholar 

  48. Hibi M, Lin A, Smeal T, Minden A, Karin M: Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135-2148, 1993

    Google Scholar 

  49. Gupta S, Campbell D, Derijard B, Davis RJ: Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267: 389-393, 1995

    Google Scholar 

  50. Bogoyevitch MA, Ketterman AJ, Sugden PH: Cellular stresses activate c-Jun N-terminal kinases (JNKs) in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem 270: 29710-29717, 1995

    Google Scholar 

  51. Gross A, McDonnell JM, Korsmeyer SJ: BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899-1911, 1999

    Google Scholar 

  52. Lemke LE, Bloem LJ, Fouts R, Esterman M, Sandusky G, Vlahos CJ: Decreased p38 MAPK activity in end-stage failing human myocardium: p38 MAPK alpha is the predominant isoform expressed in human heart. J Mol Cell Cardiol 33: 1527-1540, 2001

    Google Scholar 

  53. Flesch M, Margulies KB, Mochmann HC, Engel D, Sivasubramanian N, Mann DL: Differential regulation of mitogen-activated protein kinases in the failing human heart in response to mechanical unloading. Circulation 104: 2273-2276, 2001

    Google Scholar 

  54. Cook SA, Sugden PH, Clerk A: Activation of c-Jun N-terminal kinases and p38-mitogen-activated protein kinases in human heart failure secondary to ischaemic heart disease. J Mol Cell Cardiol 31:1429-1434, 1999

    Google Scholar 

  55. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD: Differential activation of signal transduction pathways in human hearts with hypertrophy vs. advanced heart failure. Circulation 103: 670-677, 2001

    Google Scholar 

  56. Takeishi Y, Huang Q, Abe J, Che W, Lee JD, Kawakatsu H, Hoit BD, Berk BC, Walsh RA: Activation of mitogen-activated protein kinases and p90 ribosomal S6 kinase in failing human hearts with dilated cardiomyopathy. Cardiovase Res 53: 131-137, 2002

    Google Scholar 

  57. Takeishi Y, Huang Q, Abe J, Glassman M, Che W, Lee JD, Kawakatsu H, Lawrence EG, Hoit BD, Berk BC, Walsh RA: Src and multiple MAP kinase activation in cardiac hypertrophy and congestive heart failure under chronic pressure-overload: Comparison with acute mechanical stretch. J Mol Cell Cardiol 33: 1637-1648, 2001

    Google Scholar 

  58. Pellieux C, Sauthier T, Aubert JF, Brunner HR, Pedrazzini T: Angiotensin II-induced cardiac hypertrophy is associated with different mitogen-activated protein kinase activation in normotensive and hypertensive mice. J Hypertens 18: 1307-1317, 2000

    Google Scholar 

  59. Behr TM, Nerurkar SS, Nelson AH, Coatney RW, Woods TN, Sulpizio A, Chandra S, Brooks DP, Kumar S, Lee JC, Ohlstein EH, Angermann CE, Adams JL, Sisko J, Sackner-Bernstein JD, Willette RN: Hypertensive end-organ damage and premature mortality are p38 mitogen-activated protein kinase-dependent in a rat model of cardiac hypertrophy and dysfunction. Circulation 11: 1292-1298, 2001

    Google Scholar 

  60. Wang Y, Huang S, Sah VP, Ross J, Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273: 2161-2168, 1998

    Google Scholar 

  61. Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H, Saffitz J, Chien K, Xiao RP, Kass DA, Wang Y: The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci USA 9: 12283-12288, 2001

    Google Scholar 

  62. Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR: Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 273: 5423-5426, 1998

    Google Scholar 

  63. Finn SG, Dickens M, Fuller SJ: c-Jun N-terminal kinase/interacting protein 1 inhibits gene expression in response to hypertrophic agonists in neonatal rat ventricular myocytes. Biochem J 358: 489-495, 2001

    Google Scholar 

  64. Choukroun G, Hajjar R, Kyriakis JM, Bonventre JV, Rosenzweig A, Force T: Role of the stress-activated protein kinases in endothelin-induced cardiomyocyte hypertrophy. J Clin Invest 102:, 1311-1320, 1998

    Google Scholar 

  65. Yue TL, Gu JL, Wang C, Reith AD, Lee JC, Mirabile RC, Kreutz R, Wang Y, Maleeff B, Parsons AA, Ohlstein EH: Extracellular signal-regulated kinase plays an essential role in hypertrophic agonists, endothelin-1 and phenylephrine-induced cardiomyocyte hypertrophy. J Biol Chem 275: 37895-37901, 2000

    Google Scholar 

  66. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, Hewett TE, Jones SP, Lefer DJ, Peng CF, Kitsis RN, Molkentin JD: The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19: 6341-6350, 2000

    Google Scholar 

  67. Glennon PE, Kaddoura S, Sale EM, Sale GJ, Fuller SJ, Sugden PH: Depletion of mitogen-activated protein kinase using an antisense oligodeoxynucleotide approach downregulates the phenylephrine-induced hypertrophic response in rat cardiac myocytes. Circ Res 78: 954-961, 1996

    Google Scholar 

  68. Kang YJ, Zhou ZX, Wang GW, Buridi A, Klein JB: Suppression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inhibition of p38 mitogen-activated protein kinases. J Biol Chem 275: 13690-1398, 2000

    Google Scholar 

  69. Schneider S, Chen W, Hou J, Steenbergen C, Murphy E: Inhibition of p38 MAPK alpha/beta reduces ischemic injury and does not block protective effects of preconditioning. Am J Physiol Heart Circ Physiol 280: H499-H508, 2001

    Google Scholar 

  70. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA, Wang C, Lee JC, Feuerstein GZ, Yue TL: Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99: 1685-1691, 1999

    Google Scholar 

  71. Gysembergh A, Simkhovich BZ, Kloner RA, Przyklenk K: p38 MAPK activity is not increased early during sustained coronary artery occlusion in preconditioned versus control rabbit heart. J Mol Cell Cardiol 33: 681-690, 2001

    Google Scholar 

  72. Marais E, Genade S, Huisamen B, Strijdom JG, Moolman JA, Lochner A: Activation of p38 MAPK induced by a multi-cycle ischaemic preconditioning protocol is associated with attenuated p38 MAPK activity during sustained ischaemia and reperfusion. J Mol Cell Cardiol 33: 769-778, 2001

    Google Scholar 

  73. Barancik M, Htun P, Strohm C, Kilian S, Schaper W: Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol 35: 474-483, 2000

    Google Scholar 

  74. Cain BS, Meldrum DR, Meng X, Dinarello CA, Shames BD, Banerjee A, Harken AH: p38 MAPK inhibition decreases TNF-alpha production and enhances postischemic human myocardial function. J Surg Res 83: 7-12, 1999

    Google Scholar 

  75. Fijen JW, Zijlstra JG, De Boer P, Spanjersberg R, Cohen Tervaert JW, Van Der Werf TS, Ligtenberg JJ, Tulleken JE: Suppression of the clinical and cytokine response to endotoxin by RWJ-67657, a p38 mitogen-activated protein-kinase inhibitor, in healthy human volunteers. Clin Exp Immunol 124: 16-20, 2001

    Google Scholar 

  76. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, Tamemoto H, Kadowaki T, Nagai R, Yazaki Y: Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 268: 12069-12076, 1993

    Google Scholar 

  77. Kudoh S, Komuro I, Hiroi Y, Zou Y, Harada K, Sugaya T, Takekoshi N, Murakami K, Kadowaki T, Yazaki Y: Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J Biol Chem 273: 24037-24043, 1998

    Google Scholar 

  78. Hayashida W, Kihara Y, Yasaka A, Inagaki K, Iwanaga Y, Sasayama S: Stage-specific differential activation of mitogen-activated protein kinases in hypertrophied and failing rat hearts. J Mol Cell Cardiol 33: 733-744, 2001

    Google Scholar 

  79. Lazou A, Sugden PH, Clerk A: Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem J 332: 459-465, 1998

    Google Scholar 

  80. Ng DC, Long CS, Bogoyevitch MA: A role for the extracellular signal-regulated kinase and p38 mitogen-activated protein kinases in interleukin-1 beta-stimulated delayed signal transducer and activator of transcription 3 activation, atrial natriuretic factor expression, and cardiac myocyte morphology. J Biol Chem 276: 29490-29498, 2001

    Google Scholar 

  81. Clerk A, Bogoyevitch MA, Anderson MB, Sugden PH: Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine, and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem 269: 32848-32857, 1994

    Google Scholar 

  82. Xiao L, Pimental DR, Amin JK, Singh K, Sawyer DB, Colucci WS: MEK1/2-ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J Mol Cell Cardiol 33: 779-787, 2001

    Google Scholar 

  83. Bueno OF, De Windt LJ, Lim HW, Tymitz KM, Witt SA, Kimball TR, Molkentin JD: The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res 88, 88-96, 2001

    Google Scholar 

  84. Barancik M, Htun P, Maeno Y, Zimmermann R, Shaper W: Differential regulation of distinct protein kinase cascades by ischemia and ischemia/reperfusion in porcine myocardium. Circulation 96: (abstr) I-252, 1997

    Google Scholar 

  85. Behrends M, Schulz R, Post H, Alexandrov A, Belosjorow S, Michel MC, Heusch G: Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol Heart Circ Physiol 279: H1111-H1119, 2000

    Google Scholar 

  86. Araujo EG, Bianchi C, Faro R, Sellke FW: Oscillation in the activities of MEK/ERK1/2 during cardiopulmonary bypass in pigs. Surgery 130: 182-191, 2001

    Google Scholar 

  87. Yoshida K, Yoshiyama M, Omura T, Nakamura Y, Kim S, Takeuchi K, Iwao H, Yoshikawa J: Activation of mitogen-activated protein kinases in the non-ischemic myocardium of an acute myocardial infarction in rats. Jpn Circ J 65: 808-814, 2001

    Google Scholar 

  88. Knight RJ Buxton DB: Stimulation of c-Jun kinase and mitogen-activated protein kinase by ischemia and reperfusion in the perfused rat hearts. Biochem Biophys Res Commun 218: 83-88, 1996

    Google Scholar 

  89. Takeishi Y, Huang Q, Wang T, Glassman M, Yoshizumi M, Baines CP, Lee JD, Kawakatsu H, Che W, Lerner-Marmorosh N, Yan C, Ohta S, Walsh RA, Berk BC, Abe J: Src family kinase and adenosine differentially regulate multiple MAP kinases in ischemic myocardium: modulation of MAP kinases activation by ischemic preconditioning. J Mol Cell Cardiol 33: 1989-2005, 2001

    Google Scholar 

  90. Bogoyevitch MA, Gillespie-Brown J, Ketterman AJ, Fuller SJ, Ben-Levy R, Ashworth A, Marshall CJ, Sugden PH: Stimulation of the stress-activated mitogen-activated protein kinases subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-jun N-terminal kinases are activated by ischemia/reperfusion. Circ Res 79: 162-173, 1996

    Google Scholar 

  91. Ping P, Zhang J, Cao X, Kong D, Tang XL, Qiu Y, Manchikalapudi S, Auchampach JA, Black RG, Bolli R: PKC-dependent activation of p44/p42 MAPKs during myocardial ischemia-reperfusion in conscious rabbits. Am J Physiol Heart Circ Physiol 276: H1468-H1481, 1999

    Google Scholar 

  92. Fryer RM, Hsu AK, Gross GJ: ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection. Basic Res Cardiol 96: 136-142, 1995

    Google Scholar 

  93. Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer A: Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci USA 92: 8031-8035, 2001

    Google Scholar 

  94. Parrizas M, Saltiel AR, LeRoith D: Insulin-like growth factor 1 inhibits apoptosis using the phosphatidylinositol 3′-kinase and mitogen-activated protein kinase pathways. J Biol Chem 272: 154-161, 1997

    Google Scholar 

  95. Vogt A, Htun P, Kluge A, Zimmermann R, Schaper W: Insulin like growth factor II delays myocardial infarction in experimental coronary artery occlusion. Cardiovasc Res 33: 469-477, 1997

    Google Scholar 

  96. Htun P, Ito WD, Hoefer IE, Schaper J, Schaper W: Intramyocardial infusion of FGF-1 mimics ischemic preconditioning in pig myocardium. J Mol Cell Cardiol 30: 867-877, 1998

    Google Scholar 

  97. Padua RR, Sethi R, Dhalla NS, Kardami E: Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem 143: 129-135, 1995

    Google Scholar 

  98. Ghosh S, Ng LL, Talwar S, Squire IB, Galinanes M: Cardiotrophin-1 protects the human myocardium from ischemic injury: Comparison with the first and second window of protection by ischemic preconditioning. Cardiovasc Res 48: 440-447, 2000

    Google Scholar 

  99. Kuwahara K, Saito Y, Kishimoto I., Miyamoto Y, Harada M, Ogawa E, Hamanaka I., Kajiyama N, Takahashi N, Izumi T, Kawakami R, Nakao K: Cardiotrophin-1 phosphorylates Akt and BAD, and prolongs cell survival via a PI3K-dependent pathway in cardiac myocytes. J Mol Cell Cardiol 32: 1385-1394, 2000

    Google Scholar 

  100. Bogoyevitch MA, Glennon PE, Andersson MB, Clerk A, Lazou A, Marshall CJ, Parker PJ, Sugden PH: Endothelin-1 and fibroblast growth factors stimulate the mitogen-activated protein kinase signaling cascade in cardiac myocytes. The potential role of the cascade in the integration of two signaling pathways leading to myocyte hypertrophy. J Biol Chem 269: 1110-1119, 1994

    Google Scholar 

  101. Stephanou A, Brar B, Heads R, Knight RD, Marber MS, Pennica D, Latchman DS: Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac cells and protects them from stressful stimuli. J Mol Cardiol 30: 849-855, 1998

    Google Scholar 

  102. Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR: Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 272: 5783-5791, 1997

    Google Scholar 

  103. Weinbrenner C, Liu GS, Cohen MV, Downey JM: Phosphorylation of tyrosine 182 of p38 mitogen-activated protein kinase correlates with the protection of preconditioning in rabbit heart. J Mol Cell Cardiol 29: 2383-2391, 1997

    Google Scholar 

  104. Nakano A, Baines CP, Kim CO, Pelech SL, Downey JM, Cohen MV, Critz SD: Ischemic preconditioning activates MAPKAPK2 in isolated rabbit heart. Evidence for involvement of p38 MAPK. Circ Res 86: 144-151, 2000

    Google Scholar 

  105. Armstrong SC, Delacey M, Ganote CE: Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes. J Mol Cell Cardiol 31: 555-567, 1999

    Google Scholar 

  106. Sato M, Cordis GA, Maulik N, Das DK: SAPKs regulation of ischemic preconditioning. Am J Physiol Heart Circ Physiol 279: H901-H907, 2000

    Google Scholar 

  107. Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH: Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86: 692-699, 2000

    Google Scholar 

  108. Nakano A, Cohen MV, Critz S, Downey JM: SB 203580, an inhibitor of p38 MAPK, abolishes infarct-limiting effect of ischemic preconditioning in isolated rabbit hearts. Basic Res Cardiol 95: 466-471, 2000

    Google Scholar 

  109. Mocanu MM, Baxter GF, Yue Y, Critz SD, Yellon DM: The p38 MAPK inhibitor, SB203580, abrogates ischaemic preconditioning in rat heart but timing of administration is critical. Basic Res Cardiol 95: 472-478, 2000

    Google Scholar 

  110. Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74: 1124-1136, 1986

    Google Scholar 

  111. Cohen MV, Baines ChP, Downey JM: Ischemic preconditioning: From adenosine receptor to KATP Channel. Annu Rev Physiol 62: 79-109, 2000

    Google Scholar 

  112. Fryer RM, Pratt PF, Hsu AK, Gross GJ: Differential activation of extracellular signal regulated kinase isoforms in preconditioning and opioid-induced cardioprotection. J Pharmacol Exp Ther 296: 642-649, 2001

    Google Scholar 

  113. Maulik N, Watanabe M, Zu YL, Huang CK, Cordis GA, Schley JA, Das DK: Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat heart. FEBS Lett 396: 233-237, 1996

    Google Scholar 

  114. Martin JL, Avkiran M, Quinlan RA, Cohen P, Marber MS: Antiischemic effects of SB203580 are mediated through the inhibition of p38alpha mitogen-activated protein kinase: Evidence from ectopic expression of an inhibition-resistant kinase. Circ Res 89: 750-752, 2001

    Google Scholar 

  115. Saurin AT, Martin JL, Heads RJ, Foley C, Mockridge JW, Wright MJ, Wang Y, Marber MS: The role of differential activation of p38-mitogen-activated protein kinase in preconditioned ventricular myocytes. FASEB J 14: 2237-2246, 2000

    Google Scholar 

  116. Fryer RM, Patel HH, Hsu AK, Gross GJ: Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. Am J Physiol Heart Circ Physiol 281: H1184-H1192, 2001

    Google Scholar 

  117. Barancik M, Htun P, Schaper W: Okadaic acid and anisomycin are protective and stimulate the SAPK/JNK pathway. J Cardiovasc Pharmacol 34: 182-190, 1999

    Google Scholar 

  118. Mackay K, Mochly-Rosen D: An inhibitor of p38 mitogen-activated protein kinase protects neonatal rat cardiac myocytes from ischemia. J Biol Chem 274: 6272-6279, 1999

    Google Scholar 

  119. Yellon DM, Baxter GF: 'A second window of protection’ or delayed preconditioning phenomenon: Future horizons for myocardial protection. J Mol Cell Cardiol 27: 1023-1034, 1995

    Google Scholar 

  120. Zhao TC, Taher MM, Valerie KC, Kukreja RC: p38 triggers late preconditioning elicited by anisomycin in heart: Involvement of NF-kappaB and iNOS. Circ Res 89: 915-922, 2001

    Google Scholar 

  121. Wilson S, Wu S, Kaszala K, Ravingerova T, Vegh A, Papp J, Tomisawa S, Parratt JR, Pyne NJ: Delayed cardioprotection is associated with the subcellular relocalisation of ventricular protein kinase Cε, but not p42/44MAPK. Mol Cell Biochem 161: 225-230, 1996

    Google Scholar 

  122. English AM, Cobb MH: Pharmacological inhibitors of MAPK pathways. TIPS 23: 40-45, 2002

    Google Scholar 

  123. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR: PD 098059 is a specific inhibitor of activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270: 27489-27494, 1995

    Google Scholar 

  124. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM: Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273: 18623-18632, 1998

    Google Scholar 

  125. Brar BK, Jonassen AK, Stephanou A, Santilli G, Railson J, Knight RA, Yellon DM, Latchman DS: Urocortin protects against ischemia and reperfusion injury via a MAPK-dependent pathway. J Biol Chem 275: 8508-8514, 2000

    Google Scholar 

  126. Xie Z, Pimental DR, Lohan S, Vasertriger A, Pligavko C, Colucci WS Singh K: Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: role of p42/44 mitogen-activated protein kinase and reactive oxygen species. J Cell Physiol 188: 132-138, 2001

    Google Scholar 

  127. Tong L, Pav S, White D, Rogers S, Crane KM, Cywin CL, Brown ML, Pargellis CA: A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nature Struct Biol 4: 311-316, 1997

    Google Scholar 

  128. Kumar S, Jiang MS, Adams JL, Lee JC: Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun 263: 825-831, 1999

    Google Scholar 

  129. Sakamoto K, Urushidani T, Nagao T: Translocation of HSP27 to sarcomere induced by ischemic preconditioning in isolated rat hearts. Biochem Biophys Res Commun 269: 137-142, 2000

    Google Scholar 

  130. Ballard-Croft C, White DJ, Maass DL, Hybki DP, Horton JW: Role of p38 mitogen-activated protein kinase in cardiac myocyte secretion of the inflammatory cytokine TNF-alpha. Am J Physiol Heart Circ Physiol 280: H1970-H1981, 2001

    Google Scholar 

  131. van Eickels M, Grohe C, Lobbert K, Stimpel M, Vetter H: Angiotensin converting enzyme inhibitors block mitogenic signalling pathways in rat cardiac fibroblasts. Naunyn Schmiedebergs Arch Pharmacol 359: 394-399, 1999

    Google Scholar 

  132. Kim S, Izumi Y, Yano M, Hamaguchi A, Miura K, Yamanaka S, Miyazaki H, Iwao H: Angiotensin blockade inhibits activation of mitogen-activated protein kinases in rat balloon-injured artery. Circulation 97: 1731-1737, 1998

    Google Scholar 

  133. Yue TL, Ma XL, Wang X, Romanic AM, Liu GL, Louden C, Gu JL, Kumar S, Poste G, Ruffolo RR, Feuerstein GZ: Possible involvement of stress-activated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 82: 166-174, 1998

    Google Scholar 

  134. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT: The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidyl-inositol 3′-kinase. Circ Res 87: 1172-1179, 2000

    Google Scholar 

  135. Hanford DS, Glembotski CC: Stabilization of the B-type natriuretic peptide mRNA in cardiac myocytes by alpha-adrenergic receptor activation: Potential roles for protein kinase C and mitogen-activated protein kinase. Mol Endocrinol 10: 1719-1727, 1996

    Google Scholar 

  136. Cano E, Doza YN, Ben-Levy R, Cohen P, Mahadevan LC: Identification of anisomycin-activated kinases p45 and p55 in murine cells as MAPKAP kinase-2. Oncogene 12: 805-812, 1996

    Google Scholar 

  137. Baines CP, Wang L, Cohen MV, Downey JM: Protein tyrosine kinase is downstream of protein kinase C for ischemic preconditioning's anti-infarct effect in the rabbit heart. J Mol Cell Cardiol 30: 383-392, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravingerová, T., Barančík, M. & Strnisková, M. Mitogen-activated protein kinases: A new therapeutic target in cardiac pathology. Mol Cell Biochem 247, 127–138 (2003). https://doi.org/10.1023/A:1024119224033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024119224033

Navigation