Skip to main content

Advertisement

Log in

Immunological and Regulatory Functions of Uninfected and Virus Infected Immature and Mature Subtypes of Dendritic Cells – a Review

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

In 1868, dendritic cells (DCs) were discovered in human skin by Paul Langerhans using gold staining. These cells were named Langerhans cells (LCs) after their discoverer who, due to their dendrites, regarded them as neurons. One hundred and eleven years were to pass until it was discovered that in vertebrates these cells originate in the bone marrow as monocytes. In the 1980s, DC research was mostly carried out on DCs that are present in different tissues of mice and humans. These studies revealed that after interaction with foreign antigens, skin LCs/DCs migrate through the lymph vessels to the draining lymph nodes and induce the two arms of the immune response. The isolation of DCs from tissue cell suspensions opened the way to studies on the cells' surface proteins and their ability to stimulate immune responses. During the 1990s, studies revealed the role of DCs in the activation of naïve T cells in the lymph nodes and the regulatory properties of DCs in lymph nodes, thymus, gut, and spleen.

Part A of the review deals with the DC system of human and mice and immunological and regulatory functions of subsets of DCs in the skin with reference to migrating and stationary DCs, as well as the connection between DCs and the nervous system. Furthermore, the origin of both follicular DCs that are present in lymphoid tissues and thymic DCs are discussed. Part B is devoted to virus infections of DCs with an emphasis on infections caused by human herpes viruses. Part C presents the modulation of DC gene expression in response to the influenza virus. Contemporary research focuses on the role of DCs in the immune systems of vertebrates. Moreover, studies are being conducted on the regulatory functions of DCs by tissue cells in different organs of vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Langerhans P., Uber die Nerven der menschlichen haut. Vizchows Arch [A] 44, 325-327, 1968.

    Google Scholar 

  2. Ebling F.J.G., Homage to Paul Langerhans. J Invest Dermatol 75, 3-5, 1980.

    Google Scholar 

  3. Breathnach A.S., Silvers W.K., Smith J., and Heyner S., Langerhans cells in mouse skin experimentally deprived of its neural crest component. J Invest Dermatol 50, 147-150, 1968.

    Google Scholar 

  4. Steinman R.M. and Cohn Z.A., Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation tissue distribution. J Exp Med 137, 1142-1162, 1973.

    Google Scholar 

  5. Katz S.I., Tamaki K., and Sachs D.H., Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 282, 324-326, 1979.

    Google Scholar 

  6. Romani N., Koide S., Crowley M., Witmer-Pack M., Livingstone A.M., Fathman C.G., Inaba K., and Steinman R., Preservation of exogenous protein antigens by dendritic cells to T cell clones. J Exp Med 169, 1169-1178, 1989.

    Google Scholar 

  7. Sprecher E. and Becker Y., Dendritic cells in the epidermis and lymph nodes—a review, in Becker Y. (ed.), Skin Langerhans (Dendritic) Cells in Virus Infections and AIDS, Developments in Medical Virology. Kluwer Academic Publishers, Boston/Dordrecht/London, 1991, pp. 3-23.

    Google Scholar 

  8. Caux C., Dezutter-Dambuyant C., Schmitt D., and Bauchereak J., GM-CSF and TNF-α cooperate in the generation of dendritic Langerhans cells. Nautre 360, 258-261, 1992.

    Google Scholar 

  9. Reddy A., Sapp M., Feldman M., Subklewe M., and Bhardwaj N., A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood 90, 3640-3646, 1997.

    Google Scholar 

  10. Bender A., Sapp M., Schuler G., Steinman R.M., and Bhardwaj N., Improved methods for the generation of dendritic cells from non-proliferating progenitors in human blood. J Immunol Meth 196, 121-135, 1996.

    Google Scholar 

  11. Macatonia S.E., Knight S.E., Edwards A.J., Griffiths S., and Fryer P., Localization of antigen on lymph node dendiritc cells after exposure to the contact sensitizer fluorescein isothiocyanate. J Exp Med 166, 1654-1667, 1987.

    Google Scholar 

  12. Austyn J.M., and Larsen C.P., Migration pattern of dendritic leukocytes. Transplantation 49, 1-7, 1990.

    Google Scholar 

  13. Nair S., Zou F., and Reddy R., Huang L., and Rouse B.T., Soluble proteins delivered to dendritic cells via pH-sensitive liposomes induce primary cytotoxic T lymphocyte responses in-vitro. J Exp Med 175, 609-612, 1992.

    Google Scholar 

  14. Progador A.K., and Gilboa E., Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 182, 255-260, 1995.

    Google Scholar 

  15. Barratt-Boyes S.M., Zimmer M.I., Harshyne L.A., Meyer E.M., Watkins S.C., Capuano III S., Murphy-Corb M., Falo Jr., LD., and Donnenberg A.D., Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell based vaccines. J Immunol 164, 2487-2499, 2000.

    Google Scholar 

  16. Hosoi J., Murphy G.F., Egan C.L., Lerner E.A., Grabbe S., Ashina A., and Granstein R.D., Regulation of Langerhans cell function by nerves containing calcitonin gene-related peptide. Nature 363, 159-163, 1993.

    Google Scholar 

  17. Carucci J.A., Ignatius R., Wei Y., Cypes A.M., Schaer D.A., Pope M., Steinman R.M., and Mojsov S., Calcitonin gene-related peptide decreases expression of HLA-DR and CD86 by human dendritic cells and dampens dendritic cell-driven T cell proliferative responses via the type I calcitonin gene-related peptide receptor. J Immunol 164, 3494-3499, 2000.

    Google Scholar 

  18. Munn D.H., Sharma M.D., Lee J.R., Jhaver K.G., Johnson T.S., Keskin D.B., Marshall B., Chandler P., Antonia S.J., Burgess R., Slingluff C.L. Jr, and Mellor A., Potential regulatory function of human dendritic cells expressing indoleamine 2, 3-dioxygenase. Science 297, 1867-1870, 2002.

    Google Scholar 

  19. Mackay F. and Browning J.L., Turning off follicular dendritic cells. Nature 395, 26-27, 1998.

    Google Scholar 

  20. Matsumoto M., Fu Y.-X., Molina H., Huang G., Kim J., Thomas D.A., Nahm M.H., and Chaplin D.D., Distinct roles of lymphotoxin α and type I tumor neurosis factor (TNF) receptor in establishment of follicular dendritic cells from non-bone marrow-derived cells. J Exp Med 186, 1997-2004, 1997.

    Google Scholar 

  21. Marshall A.J., Du Q., Draves K.E., Shikishima Y., HayGlass K.T., and Clark E.A., FDC-SP, a novel secreted protein expressed by follicular dendritic cells. J Immunol 169, 2381-2389, 2002.

    Google Scholar 

  22. Brocker T., Reidinger M., and Karjalainen K., Targeted expression of major histocompatibility complex (MHC) class II molecules demonstrates that dendritic cells can induce negative but not positive selection of thymocytes in-vivo. J Exp Med 185, 541-550, 1997.

    Google Scholar 

  23. de Yébenes V.G., Carrasco Y.R., Ramiro A.R., and Toribio M.L., Identification of a myeloid intrathymic pathway of dendritic cell development marked by expression of gramulocyte macrophage-colony-stimulating factor receptor. Blood 99, 2948-2956, 2002.

    Google Scholar 

  24. Radtke F., Ferrero I., Wilson A., Lees R., Aguet M., and MacDonald H.R., Notch 1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J Exp Med 191, 1085-1093, 2000.

    Google Scholar 

  25. Aiello S., Noris M., Pichinini G., Tomasoui S., Casiraghi F., Bonazzola S., Mister M., Sayegh M.H., and Remuzzi G., Thymic dendritic cells express inducible nitric oxide synthase and generate nitric oxide in response to self and alloantigens. J Immunol 164, 4649-4658, 2000.

    Google Scholar 

  26. Perez Torres A. and Milan Aldaco D.A., Ia antigens are expressed on ATPase-positive dendritic cells in chicken epidermis. J Anat 184, 591-596, 1994.

    Google Scholar 

  27. Gallego M., del Cacho E., Lopez-Bernad F., and Bascaus J.A., Identification of avian dendritic cells in the spleen using a monoclonal antibody specific for chicken follicular dendritic cells. Anat Rec 249, 81-85, 1997.

    Google Scholar 

  28. Gallego M., del Cacho E., Zapata A., and Bascaus J.A., Ultrastructural identification of the splenic follicular dendritic cells in the chicken. Anat Rec 242, 220-224, 1995.

    Google Scholar 

  29. Gallego M., del Cacho E., and Bascuas J.A., Antigen binding cells in cecal tonsils and Peyer's patches of the chicken after bovine serum albumin administration. Poult Sci 74, 472-479. 1995.

    Google Scholar 

  30. Nagao S., Inaba S., and Iijima S., Langerhans cells at the site of vaccine inoculation. Arch Dermatol Res 256, 23-31, 1976.

    Google Scholar 

  31. Becker Y., HSV-1 brain infection by the olfactory nerve route and virus latency and reactivation may cause learning and behavioral deficiencies and violence in children and adults: a point of view. Virus Genes 10, 217-226, 1995.

    Google Scholar 

  32. Mikloska Z., Bosnjak L., and Cunningham A.L., Immature monocyte-derived dendritic cells are productively infected with herpes simplex virus type 1. J Virol 75, 5958-5964, 2001.

    Google Scholar 

  33. Sailo M., Cella M., Suter M., and Lanzavecchia A., Inhibition of dendritic cell maturation by herpes simplex virus. Eur J Immunol 29, 3245-3253, 1999.

    Google Scholar 

  34. Kruse M., Rosorius D., Kratzer F., Stelz G., Kuhnt C., Schuler G., Hauber J., and Steinkasserer A., Mature dendritic cells infected with herpes simplex virus type exhibit T-cell stimulatory capacity. J Virol 74, 7127-7136, 2000.

    Google Scholar 

  35. Campadelli-Fiume G., Cocci F., Menotti L., and Lopez M., The novel receptors that mediate the entry of herpes simplex viruses and animal alpha herpesviruses into cells. Rev Med Virol 10, 305-319, 2000.

    Google Scholar 

  36. Guo M., Gong S., Maric S., Misulovin Z., Pack M., Malinke K., and Nussenzweig M.C., Steinman R.M., A monoclonal antibody to the DEC-205 endocytosis receptor on human dendritic cells. Human Immunol 61, 729-738, 2000.

    Google Scholar 

  37. Becker Y., Herpes simplex virus evolved to use the human defense mechanisms to establish a lifelong infection in neurons—a review and hypothesis. Virus Genes 24, 187-196, 2002.

    Google Scholar 

  38. Penfold M.E.T., Armati P., and Cunningham A.L., Axonal transport of herpes simplex virions to epidermal cells: evidence for a specialized mode of virus transport and assembly. Proc Nat Acad Sci USA 91, 6529-6533, 1994.

    Google Scholar 

  39. Abendroth A., Morrow G., Cunningham A.L., and Slobedman B., Varicella-Zoster virus infection of human dendritic cells and transmission to T cells: implications for virus dissemination in the host. J Virol 75, 6183-6192, 2001.

    Google Scholar 

  40. Riegler S., Hebart H., Einsele H., Brossart P., Jahn G., and Sinzger C., Monocyte-derived dendritic cells are permissive to the complete replicative cycle of human cytomegalovirus. J Gen Virol 81, 393-399, 2000.

    Google Scholar 

  41. Asada H., Klaus-Kovtun V., Golding H., Katz S.I., and Blauvelt A., Human Herpesvirus-6 infects dendritic cells and suppresses human immunodeficiency virus type 1 replication in coinfected cultures. J Virol 73, 4019-4028, 1999.

    Google Scholar 

  42. Lindhout E., Lakeman A., Mevissen M.L., and de Groot C., Functionally active Epstein-Barr virus-transformed follicular dendritic-like cell lines J Exp Med 179, 1173-1184, 1994.

    Google Scholar 

  43. Shek T.W., Ho F.C., Ng I.O., Chan A.C., Ma L., and Srivastava G., Follicular dendritic cell tumor of the liver. Evidence for an Epstein-Barr virus related clonal proliferation of follicular dendritic cells. Am J Surg Pathol 20, 313-324, 1996.

    Google Scholar 

  44. van Gorp J., Jacobse K.C., Broeckhuizen R., Alers J., Vanden Twecl J.G., and de Weger R.A., Encoded latent membrane protein 1 of Epstein-Barr virus on follicular dendritic cells in residual germinal centers in Hodgkin's disease. J Clin Pathol 47, 29-32, 1994.

    Google Scholar 

  45. Davidson I., Malkinson M., and Becker Y., Distribution of IA antigen positive cells in chicken embryos infected with oncogneic Marek's disease virus (MDV) and MD vaccine viruses of serotypes 1, 2, and 3. Vet Immunol Immunopathol 40, 135-147, 1994.

    Google Scholar 

  46. Bobryshev Y.V., Konovalov H.V., and Lord R.S., Ultrastructural recognition of dendritic cells in the intiaml lesions of aortas of chickens affected with Marek's disease. J Submicrosc Cytol Pathol 31, 179-185, 1999.

    Google Scholar 

  47. Cella M., Salio M., Sakakibara Y., Langen H., Julkunen I., and Lanzavecchia A., Maturation, activation, and production of dendritic cells induced by double-stranded RNA. J Exp Med, 821-829, 1999.

  48. Pavlovic J., Arrzet H.A., Hefti H.P., Frese M., Rost D., Ernst B., Kolb E., Stahelli P., and Haller O., Enhanced virus resistance of transgenic mice expressing the human Mx protein. J Virol 69, 4506-4510, 1995.

    Google Scholar 

  49. Huang Q., Liu D., Majewski P., Schulte L.C., Korn J.M., Young R.A., Lander E.S., and Hacohen N., The plasticity of dendritic cell responses to pathogens and their components. Science 294, 870-875, 2001.

    Google Scholar 

  50. Becker Y., Milestones in the Research on Langerhans/Dendritic cells (LCs/DCs) from the discovery by Paul Langerhans in 1868 until 1986. Virus Genes 26, 131-134, 2003.

    Google Scholar 

  51. Hwu P., Du M.X., Lapoint R., Do M., Taylor M.W., and Young H.A., Indoleamine 2,3-Dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J Immunol 164, 3596-3599, 2000.

    Google Scholar 

  52. Enk C., Sredni D., Baluvelt A., and Katz S.I., Induction of IL-10 gene expression in human epidermal cells by UVB exposure in-vivo and in-vitro. J Immunol 154, 4851-4856, 1995.

    Google Scholar 

  53. Becker Y., An analysis of the role of skin Langerhans cells (LC) in the cytoplasmic processing of HIV-1 peptides after “Pepolation” transepidermal transfer and HLA class I presentation to CD8 + T cells—an approach to immunization of humans. Virus Genes 9, 133-147, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, Y. Immunological and Regulatory Functions of Uninfected and Virus Infected Immature and Mature Subtypes of Dendritic Cells – a Review. Virus Genes 26, 119–130 (2003). https://doi.org/10.1023/A:1023427228024

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023427228024

Navigation