Skip to main content
Log in

In Vivo NMR Studies of Neurodegenerative Diseases in Transgenic and Rodent Models

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

In vivo magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) provide unique quality to attain neurochemical, physiological, anatomical, and functional information noninvasively. These techniques have been increasingly applied to biomedical research and clinical usage in diagnosis and prognosis of diseases. The ability of MRS to detect early yet subtle changes of neurochemicals in vivo permits the use of this technology for the study of cerebral metabolism in physiological and pathological conditions. Recent advances in MR technology have further extended its use to assess the etiology and progression of neurodegeneration. This review focuses on the current technical advances and the applications of MRS and MRI in the study of neurodegenerative disease animal models including amyotrophic lateral sclerosis, Alzheimer's, Huntington's, and Parkinson's diseases. Enhanced MR measurable neurochemical parameters in vivo are described in regard to their importance in neurodegenerative disorders and their investigation into the metabolic alterations accompanying the pathogenesis of neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Blass, J. P., Sheu, R. K., and Cedarbaum, J. M. 1988. Energy metabolism in disorders of the nervous system. Rev. Neurol. (Paris) 144:543–563.

    Google Scholar 

  2. Ames, B. N., Shigenaga, M. K., and Hagen, T. M. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90:7915–7922.

    PubMed  Google Scholar 

  3. Coyle, J. T. and Puttfarcken, P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695.

    PubMed  Google Scholar 

  4. Olanow, C. W. 1993. A radical hypothesis for neurodegeneration. Trends. Neurosci. 16:439–444.

    PubMed  Google Scholar 

  5. Beal, M. F. 1995. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38:357–366.

    PubMed  Google Scholar 

  6. Fiskum, G., Murphy, A. N., and Beal, M. F. 1999. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J. Cereb. Blood Flow Metab. 19:351–369.

    PubMed  Google Scholar 

  7. Murphy, A. N., Fiskum, G., and Beal, M. F. 1999. Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J. Cereb. Blood Flow Metab. 19:231–245.

    PubMed  Google Scholar 

  8. Tarnopolsky, M. A. and Beal, M. F. 2001. Potential for creatine and other therapies targeting cellular energy dysfunction in neurological disorders. Ann. Neurol. 49:561–574.

    PubMed  Google Scholar 

  9. Peng, T. I., Jou, M. J., Sheu, S. S., and Greenamyre, J. T. 1998. Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp. Neurol. 149:1–12.

    PubMed  Google Scholar 

  10. Mahadik, S. P. and Mukherjee, S. 1996. Free radical pathology and antioxidant defense in schizophrenia: a review. Schizophr. Res. 19:1–17.

    PubMed  Google Scholar 

  11. Pitkanen, S. and Robinson, B. H. 1996. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J. Clin. Invest. 98:345–351.

    PubMed  Google Scholar 

  12. Raha, S. and Robinson, B. H. 2000. Mitochondria, oxygen free radicals, disease and ageing. Trends. Biochem. Sci. 25:502–508.

    PubMed  Google Scholar 

  13. Jenner, P., Dexter, D. T., Sian, J., Schapira, A. H., and Marsden, C. D. 1992. Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. Ann. Neurol. 32 Suppl:S82-S87.

    PubMed  Google Scholar 

  14. Bains, J. S. and Shaw, C. A. 1997. Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Brain Res. Rev. 25:335–358.

    PubMed  Google Scholar 

  15. Steeghs, K., Benders, A., Oerlemans, F., de Haan, A., Heer-schap, A., Ruitenbeek, W., et al. 1997. Altered Ca2+ responses in muscles with combined mitochondrial and cytosolic creatine kinase deficiencies. Cell 89:93–103.

    PubMed  Google Scholar 

  16. Green, D. R. and Reed, J. C. 1998. Mitochondria and apoptosis. Science 281:1309–1312.

    PubMed  Google Scholar 

  17. Mecocci, P., MacGarvey, U., Kaufman, A. E., Koontz, D., Shoffner, J. M., Wallace, D. C., et al. 1993. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann. Neurol. 34:609–616.

    PubMed  Google Scholar 

  18. Mecocci, P., MacGarvey, U., and Beal, M. F. 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol. 36:747–751.

    PubMed  Google Scholar 

  19. Beal, M. F. 1996. Mitochondria, free radicals, and neurodegeneration. Curr. Opin. Neurobiol. 6:661–666.

    PubMed  Google Scholar 

  20. Bogdanov, M. B., Ramos, L. E., Xu, Z., and Beal, M. F. 1998. Elevated “hydroxyl radical” generation in vivo in an animal model of amyotrophic lateral sclerosis. J. Neurochem. 71:1321–1324.

    PubMed  Google Scholar 

  21. Tabrizi, S. J., Cleeter, M. W., Xuereb, J., Taanman, J. W., Cooper, J. M., and Schapira, A. H. 1999. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann. Neurol. 45:25–32.

    PubMed  Google Scholar 

  22. Browne, S. E., Bowling, A. C., MacGarvey, U., Baik, M. J., Berger, S. C., Muqit, M. M., et al. 1997. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann. Neurol. 41:646–653.

    PubMed  Google Scholar 

  23. Simon, D. K. and Standaert, D. G. 1999. Neuroprotective therapies. Med. Clin. North. Am. 83:509–523.

    PubMed  Google Scholar 

  24. Simon, D. K. and Johns, D. R. 1999. Mitochondrial disorders: clinical and genetic features. Annu. Rev. Med. 50:111–127.

    PubMed  Google Scholar 

  25. O'Gorman, E., Piendl, T., Muller, M., Brdiczka, D., and Wallimann, T. 1997. Mitochondrial intermembrane inclusion bodies: the common denominator between human mitochondrial myopathies and creatine depletion, due to impairment of cellular energetics. Mol. Cell. Biochem. 174:283–289.

    PubMed  Google Scholar 

  26. Miyajima, H., Takahashi, Y., Kono, S., Sugimoto, M., Suzuki, Y., Hishida, A., et al. 2002. Glucose and oxygen hypometabolism in aceruloplasminemia brains. Intern. Med. 41:186–190.

    PubMed  Google Scholar 

  27. Blum-Degen, D., Frolich, L., Hoyer, S., and Riederer, P. 1995. Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? J. Neural. Transm. Suppl. 46:139–147.

    PubMed  Google Scholar 

  28. Desgranges, B., Baron, J. C., de la Sayette, V., Petit-Taboue, M. C., Benali, K., Landeau, B., et al. 1998. The neural substrates of memory systems impairment in Alzheimer's disease. A PET study of resting brain glucose utilization. Brain 121 (Pt 4):611–631.

    PubMed  Google Scholar 

  29. Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., et al. 1993. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J. Neurosci. 13:4181–4192.

    PubMed  Google Scholar 

  30. Tabrizi, S. J. and Schapira, A. H. 1999. Secondary abnormalities of mitochondrial DNA associated with neurodegeneration. Biochem. Soc. Symp. 66:99–110.

    PubMed  Google Scholar 

  31. Tkac, I., Starcuk, Z., Choi, I.Y., and Gruetter, R. 1999. In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41:649–656.

    PubMed  Google Scholar 

  32. Pfeuffer, J., Tkac, I., Provencher, S. W., and Gruetter, R. 1999. Toward an in vivo neurochemical profile: Quantification of 18 metabolites in short-echo-time 1H NMR spectra of the rat brain. J. Magn. Reson. 141:104–120.

    PubMed  Google Scholar 

  33. Kustermann, E., Andreassen, O. A., Beal, M. F., and Jenkins, B. G. 2000. Cerebral glucose metabolism in a transgenic animal model of ALS as detected by in vivo 13C MRS. Proc. Intl. Soc. Mag. Reson. Med. 8:1088.

    Google Scholar 

  34. Henry, P.G., Lebon, V., Vaufrey, F., Brouillet, E., Hantraye, P., and Bloch, G. 2001. In vivo NMR measurement of TCA cycle rate alteration following 3NP intoxication. Proc. Intl. Soc. Mag. Reson. Med. 9:205.

    Google Scholar 

  35. Cuenod, C. A., Kaplan, D. B., Michot, J. L., Jehenson, P., Leroy-Willig, A., Forette, F., et al. 1995. Phospholipid abnormalities in early Alzheimer's disease. In vivo phosphorus 31 magnetic resonance spectroscopy. Arch. Neurol. 52:89–94.

    PubMed  Google Scholar 

  36. Jenkins, B. G., Klivenyi, P., Kustermann, E., Andreassen, O. A., Ferrante, R. J., Rosen, B. R., et al. 2000. Nonlinear decrease over time in N-acetyl aspartate levels in the absence of neuronal loss and increases in glutamine and glucose in transgenic Huntington's disease mice. J. Neurochem. 74:2108–2119.

    PubMed  Google Scholar 

  37. Cunningham, C. C. 1986. Use of nuclear magnetic resonance spectroscopy to study the effects of ethanol consumption on liver metabolism and pathology. Alcohol. Clin. Exp. Res. 10:246–250.

    PubMed  Google Scholar 

  38. Jehenson, P., Leroy-Willig, A., de Kerviler, E., Merlet, P., Duboc, D., and Syrota, A. 1995. Impairment of the exercise-induced increase in muscle perfusion in McArdle's disease. Eur. J. Nucl. Med. 22:1256–1260.

    PubMed  Google Scholar 

  39. Moon, R. B. and Richards, J. H. 1973. Determination of intracellular pH by 31P magnetic resonance. J. Biol. Chem. 248:7276–7278.

    PubMed  Google Scholar 

  40. Hoult, D. I., Busby, S. J., Gadian, D. G., Radda, G. K., Richards, R. E., and Seeley, P. J. 1974. Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 252:285–287.

    PubMed  Google Scholar 

  41. Madden, A., Leach, M. O., Sharp, J. C., Collins, D. J., and Easton, D. 1991. A quantitative analysis of the accuracy of in vivo pH measurements with 31P NMR spectroscopy: assessment of pH measurement methodology. NMR Biomed. 4:1–11.

    PubMed  Google Scholar 

  42. Petroff, O. A., Prichard, J. W., Behar, K. L., Alger, J. R., den Hollander, J. A., and Shulman, R. G. 1985. Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35:781–788.

    PubMed  Google Scholar 

  43. Pettigrew, J. W., Withers, G., Panchalingam, K., and Post, J. F. M. 1988. Considerations for brain pH assessment by 31P NMR. Magn. Reson. Imag. 6:135–142.

    Google Scholar 

  44. Roberts, J. K., Wade-Jardetzky, N., and Jardetzky, O. 1981. Intracellular pH measurements by 31P nuclear magnetic resonance. Influence of factors other than pH on 31P chemical shifts. Biochemistry 20:5389–5394.

    PubMed  Google Scholar 

  45. Gadian, D. G., Radda, G. K., Richards, R. E., and Seeley, P. J. 1979. Biological Applications of Magnetic Resonance. Academic Press, New York.

    Google Scholar 

  46. Howe, F. A., Maxwell, R. J., Saunders, D. E., Brown, M. M., and Griffiths, J. R. 1993. Proton spectroscopy in vivo. Magnetic Resonance Quarterly 9:31–59.

    PubMed  Google Scholar 

  47. Wyrwicz, A. M., Pszenny, M. H., Schofield, J. C., Tillman, P. C., Gordon, R. E., and Martin, P. A. 1983. Noninvasive observations of fluorinated anesthetics in rabbit brain by fluorine-19 nuclear magnetic resonance. Science 222:428–430.

    PubMed  Google Scholar 

  48. Wyrwicz, A. M., Conboy, C. B., Nichols, B. G., Ryback, K. R., and Eisele, P. 1987. In vivo 19F-NMR study of halothane distribution in brain. Biochim. Biophys. Acta. 929:271–277.

    PubMed  Google Scholar 

  49. Jynge, P., Skjetne, T., Gribbestad, I., Kleinbloesem, C. H., Hoogkamer, H. F., Antonsen, O., et al. 1990. In vivo tissue pharmacokinetics by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans. Clin. Pharmacol. Ther. 48:481–489.

    PubMed  Google Scholar 

  50. Dardzinski, B. J. and Sotak, C. H. 1994. Rapid tissue oxygen tension mapping using 19F inversion recovery echo planar imaging of perfluoro-15-crown-5-ether. Magn. Reson. Med. 32:88–97.

    PubMed  Google Scholar 

  51. Eidelberg, D., Johnson, G., Barnes, D., Tofts, P. S., Delpy, D., Plummer, D., et al. 1988. 19F NMR imaging of blood oxygenation in the brain. Magn. Reson. Med. 6:344–352.

    PubMed  Google Scholar 

  52. Holland, S. K., Kennan, R. P., Schaub, M. M., D'Angelo, M. J., and Gore, J. C. 1993. Imaging oxygen tension in liver and spleen by 19F NMR. Magn. Reson. Med. 29:446–458.

    PubMed  Google Scholar 

  53. Mason, R. P., Nunnally, R. L., and Antich, P. P. 1991. Tissue oxygenation: a novel determination using 19F surface coil NMR spectroscopy of sequestered perfluorocarbon emulsion. Magn. Reson. Med. 18:71–79.

    PubMed  Google Scholar 

  54. Kanamori, K., Parivar, F., and Ross, B. D. 1993. A 15N NMR study of in vivo cerebral glutamine synthesis in hyperammonemic rats. NMR Biomed. 6:21–26.

    PubMed  Google Scholar 

  55. Kanamori, K. and Ross, B. D. 1995. Steady-state in vivo glutamate dehydrogenase activity in rat brain measured by 15N NMR. J. Biol. Chem. 270:24805–24809.

    PubMed  Google Scholar 

  56. Hore, P. J. 1983. Solvent suppression in Fourier transform nuclear magnetic resonance. J. Magn. Reson. 55:283–300.

    Google Scholar 

  57. Rothman, D. L., Behar, K. L., Hetherington, H. P., and Shulman, R. G. 1984. Homonuclear 1H double-resonance difference spectroscopy of the rat brain in vivo. Proc. Natl. Acad. Sci. USA 81:6330–6334.

    PubMed  Google Scholar 

  58. Mescher, M., Tannus, A., Johnson, M. O., and Garwood, M. 1996. Solvent suppression using selective echo dephasing. J. Magn. Reson. A. 123:226–229.

    Google Scholar 

  59. Ogg, R. J., Kingsley, P. B., and Taylor, J. S. 1994. WET, a T1 and B1insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J. Magn. Reson. B 104:1–10.

    PubMed  Google Scholar 

  60. Ernst, T. and Hennig, J. 1995. Improved water suppression for localized in vivo 1H spectroscopy. J. Magn. Reson. B. 106:181–186.

    PubMed  Google Scholar 

  61. de Graaf, R. A., Luo, Y., Garwood, M., and Nicolay, K. 1996. B1insensitive, single-shot localization and water suppression. J. Magn. Reson. B 113:35–45.

    PubMed  Google Scholar 

  62. Gruetter, R. 1993. Automatic, localized in vivo adjustment of all first-and second-order shim coils. Magn. Reson. Med. 29:804–811.

    PubMed  Google Scholar 

  63. Gruetter, R. and Tkac, I. 2000. Field mapping without reference scan using asymmetric echoplanar techniques. Magn. Reson. Med. 43:319–323.

    PubMed  Google Scholar 

  64. Tkac, I., Keene, C. D., Pfeuffer, J., Low, W. C., and Gruetter, R. 2001. Metabolic changes in quinolinic acid-lesioned rat striatum detected non-invasively by in vivo 1H NMR spectroscopy. J. Neurosci. Res. 66:891–898.

    PubMed  Google Scholar 

  65. Alger, J. R., Sillerud, L. O., Behar, K. L., Gillies, R. J., Shulman, R. G., Gordon, R. E., et al. 1981. In vivo carbon-13 nuclear magnetic resonance studies of mammals. Science 214:660–662.

    PubMed  Google Scholar 

  66. Beckmann, N., Seelig, J., and Wick, H. 1990. Analysis of glycogen storage disease by in vivo 13C NMR: comparison of normal volunteers with a patient. Magn. Reson. Med. 16:150.

    PubMed  Google Scholar 

  67. Bottomley, P. A., Hardy, C. J., Roemer, P. B., and Mueller, O. M. 1989. Proton-decoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans. Magn. Reson. Med. 12:348–363.

    PubMed  Google Scholar 

  68. Heerschap, A., Luyten, P. R., van der Heyden, J. I., Oosterwaal, L. J., and den Hollander, J. A. 1989. Broadband proton decoupled natural abundance 13C NMR spectroscopy of humans at 1.5 T. NMR Biomed. 2:124–132.

    PubMed  Google Scholar 

  69. Pfeuffer, J., Tkac, I., Choi, I. Y., Merkle, H., Ugurbil, K., Garwood, M., et al. 1999. Localized in vivo 1H NMR detection of neurotransmitter labeling in rat brain during infusion of [1–13C]D-glucose. Magn. Reson. Med. 41:1077–1083.

    PubMed  Google Scholar 

  70. Hyder, F., Chase, J. R., Behar, K. L., Mason, G. F., Siddeek, M., Rothman, D. L., et al. 1996. Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C] NMR. Proc. Natl. Acad. Sci. USA 93:7612–7617.

    PubMed  Google Scholar 

  71. Fitzpatrick, S. M., Hetherington, H. P., Behar, K. L., and Shulman, R. G. 1990. The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J. Cereb. Blood Flow Metab. 10:170–179.

    PubMed  Google Scholar 

  72. Rothman, D. L., Behar, K. L., Hetherington, H. P., den Hollander, J. A., Bendall, M. R., Petroff, O. A. C., et al. 1985. 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc. Natl. Acad. Sci. USA 82:1633–1637.

    PubMed  Google Scholar 

  73. Freeman, R., Mareci, T. H., and Morris, G. A. 1981. Weak satellite signals in high-resolution NMR spectra: separating the wheat from the chaff. J. Magn. Reson. 42:341–345.

    Google Scholar 

  74. Bendall, M. R., Pegg, D. T., Doddrell, D. M., and Field, J. 1981. NMR of protons coupled to 13C nuclei only. J. Am. Chem. Soc. 103:934–936.

    Google Scholar 

  75. van Zijl, P. C. M., Chesnick, A. S., DesPres, D., Moonen, C. T. W., Ruiz-Cabello, J., and Van Gelderen, P. 1993. In vivo proton spectroscopy and spectroscopic imaging of [1-13C]glucose and its metabolic products. Magn. Reson. Med. 30:544–551.

    PubMed  Google Scholar 

  76. Muller, L. 1979. Sensitivity enhanced detection of weak nuclei using hetero nuclear multiple quantum coherence. J. Am. Chem. Soc. 101:4481–4484.

    Google Scholar 

  77. Bax, A., Griffey, R. H., and Hawkins, B. L. 1983. Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J. Magn. Reson. 55:301–315.

    Google Scholar 

  78. Bendall, M. R., Pegg, D. T., and Doddrell, D. M. 1983. Pulse sequences utilizing the correlated motion of coupled heteronuclei in the transverse plane of the doubly rotating frame. J. Magn. Reson. 52:81–117.

    Google Scholar 

  79. Watanabe, H., Umeda, M., Ishihara, Y., Okamoto, K., Oshio, K., Kanamatsu, T., et al. 2000. Human brain glucose metabolism mapping using multislice 2D 1H-13C correlation HSQC spectroscopy. Magn. Reson. Med. 43:525–533.

    PubMed  Google Scholar 

  80. Watanabe, H., Ishihara, Y., Okamoto, K., Oshio, K., Kanamatsu, T., and Tsukada, Y. 2000. 3D localized 1H-13C heteronuclear single-quantum coherence correlation spectroscopy in vivo. Magn. Reson. Med. 43:200–210.

    PubMed  Google Scholar 

  81. Willker, W., Flogel, U., and Leibfritz, D. 1997. Ultra-high-resolved HSQC spectra of multiple-13C-labeled biofluids. J. Magn. Reson. 125:216–219.

    PubMed  Google Scholar 

  82. Willker, W., Engelmann, J., Brand, A., and Leibfritz, D. 1996. Metabolite identification in cell extracts and culture media by proton-detected 2D-H,C-NMR spectroscopy. J. Magn. Reson. Anal. 2:21–32.

    Google Scholar 

  83. Choi, I.Y., Tkac, I., and Gruetter, R. 2000. Single-shot, three-dimensional “non-echo” localization method for in vivo NMR spectroscopy. Magn. Reson. Med. 44:387–394.

    PubMed  Google Scholar 

  84. Choi, I.Y., Tkac, I., Ugurbil, K., and Gruetter, R. 1999. Non-invasive measurements of [1-13C] glycogen concentrations and metabolism in rat brain in vivo. J. Neurochem. 73:1300–1308.

    PubMed  Google Scholar 

  85. Gruetter, R., Seaquist, E. R., Kim, S., and Ugurbil, K. 1998. Localized in vivo 13C NMR of glutamate metabolism. Initial results at 4 Tesla. Dev. Neurosci. 20:380–388.

    PubMed  Google Scholar 

  86. Gruetter, R., Seaquist, E. R., and Ugurbil, K. 2001. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am. J. Physiol. Endocrinol. Metab. 281:E100–112.

    PubMed  Google Scholar 

  87. Shen, J., Petersen, K. F., Behar, K. L., Brown, P., Nixon, T. W., Mason, G. F., et al. 1999. Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo 13C NMR. Proc. Natl. Acad. Sci. USA 96:8235–8240.

    PubMed  Google Scholar 

  88. Yu, X., Alpert, N. M., and Lewandowski, E. D. 1997. Modeling enrichment kinetics from dynamic 13C NMR spectra: Theoretical analysis and practical considerations. Am. J. Physiol. 41:C2037-C2048.

    Google Scholar 

  89. Weiss, R. G., Stern, M. D., de Albuquerque, C. P., Vandegaer, K., Chacko, V. P., and Gerstenblith, G. 1995. Consequences of altered aspartate aminotransferase activity on 13C-glutamate labelling by the tricarboxylic acid cycle in intact rat hearts. Biochim. Biophys. Acta. 1243:543–548.

    PubMed  Google Scholar 

  90. van Zijl, P. C. M. and Rothman, D. 1995. NMR studies of brain 13C-glucose uptake and metabolism—present status. Magn. Reson. Imaging 13:1213–1221.

    PubMed  Google Scholar 

  91. Bachelard, H. and Badar-Goffer, R. 1993. NMR spectroscopy in neurochemistry. J. Neurochem. 61:412–429.

    PubMed  Google Scholar 

  92. Mason, G. F., Rothman, D. L., Behar, K. L., and Shulman, R. G. 1992. NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J. Cereb. Blood Flow Metab. 12:434–447.

    PubMed  Google Scholar 

  93. Beckmann, N., Turkalj, I., Seelig, J., and Keller, U. 1991. 13C NMR for the assessment of human brain glucose metabolism in vivo. Biochemistry 30:6362–6366.

    PubMed  Google Scholar 

  94. Malloy, C., Sherry, A., and Jeffrey, F. 1990. Analysis of tricarboxylic acid cycle of the heart using 13C isotope isomers. Am. J. Physiol. 259:H987-H995.

    PubMed  Google Scholar 

  95. Chance, E. M., Seeholzer, S. H., Kobayashi, K., and Williamson, J. R. 1983. Mathematical analysis of isotope labeling in the citric acid cycle with applications to 13C NMR studies in perfused rat hearts. J. Biol. Chem. 258:13785–13794.

    PubMed  Google Scholar 

  96. Choi, I.Y., Lei, H., and Gruetter, R. 2002. Effect of deep pentobarbital anesthesia on neurotransmitter metabolism in vivo: On the correlation of total glucose consumption with glutamatergic action. J. Cereb. Blood Flow Metab. 22:1343–1351.

    PubMed  Google Scholar 

  97. Pettegrew, J. W., Withers, G., Panchalingam, K., and Post, J. F. 1987. 31P nuclear magnetic resonance (NMR) spectroscopy of brain in aging and Alzheimer's disease. J. Neural. Transm. Suppl. 24:261–268.

    PubMed  Google Scholar 

  98. Klunk, W. E., Panchalingam, K., McClure, R. J., Stanley, J. A., and Pettegrew, J. W. 1998. Metabolic alterations in postmortem Alzheimer's disease brain are exaggerated by Apo-E4. Neurobiol. Aging. 19:511–515.

    PubMed  Google Scholar 

  99. Frahm, J., Merboldt, K. D., and Hänicke, W. 1987. Localized proton spectroscopy using stimulated echoes. J. Magn. Reson. 72:502–508.

    Google Scholar 

  100. Granot, J. 1986. Selected volume excitation using stimulated echoes (VEST). Applications to spatially localized spectroscopy and imaging. J. Magn. Reson. 70:488–492.

    Google Scholar 

  101. Kimmich, R. and Hoepfel, D. 1987. Volume-selective multipulse spin-echo spectroscopy. J. Magn. Reson. 72:379–384.

    Google Scholar 

  102. Bottomley, P. A. Selective volume method for performing localized NMR spectroscopy. U. S. patent 4 480 228. USA, 1984.

  103. Bottomley, P. A. 1987. Spatial localization in NMR spectroscopy in vivo. Ann. N. Y. Acad. Sci. 508:333–348.

    PubMed  Google Scholar 

  104. Ordidge, R. J., Bendall, M. R., Gordon, R. E., and Connelly, A. 1985. Volume Selection for in-vivo biological spectroscopy. Pages 387–397. In: Magnetic Resonance in Biology and Medicine. Govil G, Khetrapal C, and Saran A. (eds.) Tata McGraw-Hill, New Delhi.

    Google Scholar 

  105. Ordidge, R. J., Connelly, A., and Lohman, J. A. B. 1986. Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J. Magn. Reson. 66:283–294.

    Google Scholar 

  106. Doddrell, D. M., Galloway, G. J., Brooks, W. M., Bulsing, J. M., Field, J. C., Irving, M. G., et al. 1986. The utilization of two frequency-shifted sinc pulses for performing volume-selected in vivo NMR spectroscopy. Magn. Reson. Med. 3:970–975.

    PubMed  Google Scholar 

  107. Haase, A. 1986. Localization of unaffected spins in NMR imaging and spectroscopy (LOCUS spectroscopy). Magn. Reson. Med. 3:963–969.

    PubMed  Google Scholar 

  108. Brown, T. R., Kincaid, B. M., and Ugurbil, K. 1982. NMR chemical shift imaging in three dimensions. Proc. Natl. Acad. Sci. USA 79:3523–3526.

    PubMed  Google Scholar 

  109. Maudsley, A. A., Hilal, S. K., Perman, W. H., and Simon, H. E. 1983. Spatially resolved high resolution spectroscopy by “four dimensional” NMR. J. Magn. Reson. 51:147–152.

    Google Scholar 

  110. Mareci, T. H. and Brooker, H. R. 1984. High-resolution magnetic resonance spectra from a sensitive region defined with pulsed field gradients. J. Magn. Reson. 57:157–163.

    Google Scholar 

  111. Guilfoyle, D. N., Blamire, A., Chapman, B., Ordidge, R. J., and Mansfield, P. 1989. PEEP—a rapid chemical-shift imaging method. Magn. Reson. Med. 10:282–287.

    PubMed  Google Scholar 

  112. Tofts, P. S. and Wray, S. 1988. A critical assessment of methods of measuring metabolite concentrations by NMR spectroscopy. NMR Biomed. 1:1–10.

    PubMed  Google Scholar 

  113. Buchli, R. and Boesiger, P. 1993. Comparison of methods for the determination of absolute metabolite concentrations in human muscles by 31P MRS. Magn. Reson. Med. 30:552–558.

    PubMed  Google Scholar 

  114. Ernst, T., Kreis, R., and Ross, B. D. 1993. Absolete quantification of water and metabolites in the human brain: I. Compartments and water. J. Magn. Reson. B. 102:1–8.

    Google Scholar 

  115. Kreis, R., Ernst, T., and Ross, B. D. 1993. Absolete quantification of water and metabolites in the human brain: II. Metabolite concentrations. J. Magn. Reson. B. 102:9–19.

    Google Scholar 

  116. Buchli, R., Martin, E., and Boesiger, P. 1994. Comparison of calibration strategies for the in vivo determination of absolute metabolite concentrations in the human brain by 31P MRS. NMR Biomed. 7:225–230.

    PubMed  Google Scholar 

  117. Danielsen, E. R., Michaelis, T., and Ross, B. D. 1995. Three methods of calibration in quantitative proton MR spectroscopy. J. Magn. Reson. B. 106:287–291.

    PubMed  Google Scholar 

  118. Henriksen, O. 1995. In vivo quantitation of metabolite concentrations in the brain by means of proton MRS. NMR Biomed. 8:139–148.

    PubMed  Google Scholar 

  119. Hajek, M. 1995. Quantitative NMR spectroscopy. Comments on methodology of in vivo MR spectroscopy in medicine. Quart. Magn. Reson. Biol. Med. II 2:165–193.

    Google Scholar 

  120. De Santi, S., de Leon, M. J., Rusinek, H., Convit, A., Tarshish, C. Y., Roche, A., et al. 2001. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging. 22:529–539.

    PubMed  Google Scholar 

  121. Grossman, R. I., Kappos, L., and Wolinsky, J. S. 2000. The contribution of magnetic resonance imaging in the differential diagnosis of the damage of the cerebral hemispheres. J. Neurol. Sci. 172 Suppl. 1:S57–62.

    PubMed  Google Scholar 

  122. Norris, D. G. 2001. The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed. 14:77–93.

    PubMed  Google Scholar 

  123. Basser, P. J., Mattiello, J., and LeBihan, D. 1994. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66:259–267.

    PubMed  Google Scholar 

  124. Mori, S., Itoh, R., Zhang, J., Kaufmann, W. E., van Zijl, P. C., Solaiyappan, M., et al. 2001. Diffusion tensor imaging of the developing mouse brain. Magn. Reson. Med. 46:18–23.

    PubMed  Google Scholar 

  125. Detre, J. A., Leigh, J. S., Williams, D. S., and Koretsky, A. P. 1992. Perfusion imaging. Magn. Reson. Med. 23:37–45.

    PubMed  Google Scholar 

  126. Kim, S.G. 1995. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn. Reson. Med. 34:293–301.

    PubMed  Google Scholar 

  127. Kwong, K. K., Chesler, D. A., Weisskoff, R. M., Donahue, K. M., Davis, T. L., Ostergaard, L., et al. 1995. MR perfusion studies with T1-weighted echo planar imaging. Magn. Reson. Med. 34:878–887.

    PubMed  Google Scholar 

  128. Helpern, J. A., Branch, C. A., Yongbi, M. N., and Huang, N. C. 1997. Perfusion imaging by uninverted flow-sensitive alternating inversion recovery (UNFAIR). Magn. Reson. Imaging 15:135–139.

    PubMed  Google Scholar 

  129. Rosen, B. R., Belliveau, J. W., Vevea, J. M., and Brady, T. J. 1990. Perfusion Imaging with NMR Contrast Agents. Magn. Reson. Med. 14:249–265.

    PubMed  Google Scholar 

  130. Villringer, A., Rosen, B. R., Belliveau, J. W., Ackerman, J. L., Lauffer, R. B., Buxton, R. B., et al. 1988. Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn. Reson. Med. 6:164–174.

    PubMed  Google Scholar 

  131. van Dorsten, F. A., Olah, L., Schwindt, W., Grune, M., Uhlenkuken, U., Pillekamp, F., et al. 2002. Dynamic changes of ADC, perfusion, and NMR relaxation parameters in transient focal ischemia of rat brain. Magn. Reson. Med. 47:97–104.

    PubMed  Google Scholar 

  132. Lythgoe, M. F., Thomas, D. L., Calamante, F., Pell, G. S., King, M. D., Busza, A. L., et al. 2002. Acute changes in MRI diffusion, perfusion, T(1), and T(2) in a rat model of oligemia produced by partial occlusion of the middle cerebral artery. Magn. Reson. Med. 44:706–712.

    Google Scholar 

  133. Wiessner, C., Allegrini, P. R., Ekatodramis, D., Jewell, U. R., Stallmach, T., and Gassmann, M. 2001. Increased cerebral infarct volumes in polyglobulic mice overexpressing erythropoietin. J. Cereb. Blood Flow Metab. 21:857–864.

    PubMed  Google Scholar 

  134. Choi, I.Y., Lee, S.P., Kim, S.G., and Gruetter, R. 2001. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurement of cerebral blood flow changes during hypoglycemia. J. Cereb. Blood Flow Metab. 21:653–663.

    PubMed  Google Scholar 

  135. Ogawa, S., Lee, T.M., Kay, A. R., and Tank, D. W. 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87:9868–9872.

    PubMed  Google Scholar 

  136. Chen, Y. C., Galpern, W. R., Brownell, A. L., Matthews, R. T., Bogdanov, M., Isacson, O., et al. 1997. Detection of dopaminergic neurotransmitter activity using pharmacologic MRI: correlation with PET, microdialysis, and behavioral data. Magn. Reson. Med. 38:389–398.

    PubMed  Google Scholar 

  137. Birken, D. L. and Oldendorf, W. H. 1989. N-Acetyl-L-aspartic acid: a literature review of a compound prominent in 1H-NMR spectroscopic studies of brain. Neurosci. Biobehav. Rev. 13:23–31.

    PubMed  Google Scholar 

  138. Choi, I.Y. and Gruetter, R. 2000. Dynamic detection of N-Acetyl-Asparatate and Glutathione turnover using in vivo 13C NMR. J. Neurochem. 74:S86A.

    Google Scholar 

  139. Clark, J. B. 1998. N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev. Neurosci. 20:271–276.

    PubMed  Google Scholar 

  140. Jenkins, B. G., Koroshetz, W. J., Beal, M. F., and Rosen, B. R. 1993. Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology 43:2689–2695.

    PubMed  Google Scholar 

  141. Andreassen, O. A., Dedeoglu, A., Ferrante, R. J., Jenkins, B. G., Ferrante, K. L., Thomas, M., et al. 2001. Creatine increase survival and delays motor symptoms in a transgenic animal model of Huntington's disease. Neurobiol. Dis. 8:479–491.

    PubMed  Google Scholar 

  142. Dringen, R., Gebhardt, R., and Hamprecht, B. 1993. Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res. 623:208–214.

    PubMed  Google Scholar 

  143. Nakao, Y., Itoh, Y., Kuang, T., Cook, M., Jehle, J., and Sokoloff, L. 2001. Effects of anesthesia on functional activation of cerebral blood flow and metabolism. Proc. Natl. Acad. Sci. USA 98:7593–7598.

    PubMed  Google Scholar 

  144. Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Ferrante, K. L., Bogdanov, M. B., Kaddurah-Daouk, R., et al. 2001. Increases in cortical glutamate concentrations in transgenic amyotrophic lateral sclerosis mice are attenuated by creatine supplementation. J. Neurochem. 77:383–390.

    PubMed  Google Scholar 

  145. Perry, T. L., Kish, S. J., Buchanan, J., and Hansen, S. 1979 Gamma-aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet 1:237–239.

    PubMed  Google Scholar 

  146. Urquhart, N., Perry, T. L., Hansen, S., and Kennedy, J. 1975 GABA content and glutamic acid decarboxylase activity in brain of Huntington's chorea patients and control subjects. J. Neurochem. 24:1071–1075.

    PubMed  Google Scholar 

  147. Tamminga, C. A., Crayton, J. W., and Chase, T. N. 1978. Muscimol: GABA agonist therapy in schizophrenia. Am. J. Psychiatry 135:746–747.

    PubMed  Google Scholar 

  148. Carlsson, A., Waters, N., Holm-Waters, S., Tedroff, J., Nilsson, M., and Carlsson, M. L. 2001. Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu. Rev. Pharmacol. Toxicol. 41:237–260.

    PubMed  Google Scholar 

  149. Trabesinger, A. H., Weber, O. M., Duc, C. O., and Boesiger, P. 1999. Detection of glutathione in the human brain in vivo by means of double quantum coherence filtering. Magn. Reson. Med. 42:283–289.

    PubMed  Google Scholar 

  150. Adams, J. D., Jr., Klaidman, L. K., Odunze, I. N., Shen, H. C., and Miller, C. A. 1991. Alzheimer's and Parkinson's disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol. Chem. Neuropathol. 14:213–226.

    PubMed  Google Scholar 

  151. Favilli, F., Iantomasi, T., Marraccini, P., Stio, M., Lunghi, B., Treves, C., et al. 1994. Relationship between age and GSH metabolism in synaptosomes of rat cerebral cortex. Neurobiol. Aging 15:429–433.

    PubMed  Google Scholar 

  152. Altuntas, I., Aksoy, H., Coskun, I., Caykoylu, A., and Akcay, F. 2000. Erythrocyte superoxide dismutase and glutathione peroxidase activities, and malondialdehyde and reduced glutathione levels in schizophrenic patients. Clin. Chem. Lab. Med. 38:1277–1281.

    PubMed  Google Scholar 

  153. Do, K. Q., Trabesinger, A. H., Kirsten-Kruger, M., Lauer, C. J., Dydak, U., Hell, D., et al. 2000. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 12:3721–3728.

    PubMed  Google Scholar 

  154. Seaquist, E. R. and Gruetter, R. 1998. Identification of a high concentration of scyllo-inositol in the brain of a healthy human subject using 1H and 13C NMR. Magn. Reson. Med. 39:313–316.

    PubMed  Google Scholar 

  155. Shonk, T. K., Moats, R. A., Gifford, P., Michaelis, T., Mandigo, J. C., Izumi, J., et al. 1995. Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72.

    PubMed  Google Scholar 

  156. Jenkins, B. G., Rosas, H. D., Chen, Y. C., Makabe, T., Myers, R., MacDonald, M., et al. 1998. 1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat numbers. Neurology 50:1357–1365.

    PubMed  Google Scholar 

  157. Geddes, J. W., Panchalingam, K., Keller, J. N., and Pettegrew, J. W. 1997. Elevated phosphocholine and phosphatidylcholine following rat entorhinal cortex lesions. Neurobiol. Aging. 18:305–308.

    PubMed  Google Scholar 

  158. de la Torre, J. C. and Fortin, T. 1994. A chronic physiological rat model of dementia. Behav. Brain Res. 63:35–40.

    PubMed  Google Scholar 

  159. de la Torre, J. C., Fortin, T., Park, G. A., Butler, K. S., Kozlowski, P., Pappas, B. A., et al. 1992. Chronic cerebrovascular insufficiency induces dementia-like deficits in aged rats. Brain Res. 582:186–195.

    PubMed  Google Scholar 

  160. Hauss-Wegrzyniak, B., Galons, J. P., and Wenk, G. L. 2000. Quantitative volumetric analyses of brain magnetic resonance imaging from rat with chronic neuroinflammation. Exp. Neurol. 165:347–354.

    PubMed  Google Scholar 

  161. McDaniel, B., Sheng, H., Warner, D. S., Hedlund, L. W., and Benveniste, H. 2001. Tracking brain volume changes in C57BL/6J and ApoE-deficient mice in a model of neurodegeneration: a 5-week longitudinal micro-MRI study. Neuroimage 14:1244–1255.

    PubMed  Google Scholar 

  162. Koistinaho, M., Kettunen, M. I., Goldsteins, G., Keinanen, R., Salminen, A., Ort, M., et al. 2002. Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc. Natl. Acad. Sci. USA 99:1610–1615.

    PubMed  Google Scholar 

  163. Pioro, E. P., Wang, Y., Moore, J. K., Ng, T. C., Trapp, B. D., Klinkosz, B., et al. 1998. Neuronal pathology in the wobbler mouse brain revealed by in vivo proton magnetic resonance spectroscopy and immunocytochemistry. Neuroreport 9:3041–3046.

    PubMed  Google Scholar 

  164. Ferrante, R. J., Andreassen, O. A., Jenkins, B. G., Dedeoglu, A., Kuemmerle, S., Kubilus, J. K., et al. 2000. Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J. Neurosci. 20:4389–4397.

    PubMed  Google Scholar 

  165. Lee, W. T., Lee, C. S., Pan, Y. L., and Chang, C. 2000. Temporal changes of cerebral metabolites and striatal lesions in acute 3-nitropropionic acid intoxication in the rat. Magn. Reson. Med. 44:29–34.

    PubMed  Google Scholar 

  166. Chyi, T. and Chang, C. 1999. Temporal evolution of 3-nitropropionic acid-induced neurodegeneration in the rat brain by T2-weighted, diffusion-weighted, and perfusion magnetic resonance imaging. Neuroscience 92:1035–1041.

    PubMed  Google Scholar 

  167. Storey, E., Hyman, B. T., Jenkins, B., Brouillet, E., Miller, J. M., Rosen, B. R., et al. 1992. 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J. Neurochem. 58:1975–1978.

    PubMed  Google Scholar 

  168. Jenkins, B. G., Brouillet, E., Chen, Y. C., Storey, E., Schulz, J. B., Kirschner, P., et al. 1996. Non-invasive neurochemical analysis of focal excitotoxic lesions in models of neurodegenerative illness using spectroscopic imaging. J. Cereb. Blood Flow Metab. 16:450–461.

    PubMed  Google Scholar 

  169. Chen, Y. I., Brownell, A. L., Galpern, W., Isacson, O., Bog-danov, M., Beal, M. F., et al. 1999. Detection of dopaminergic cell loss and neural transplantation using pharmacological MRI, PET and behavioral assessment. Neuroreport 10:2881–2886.

    PubMed  Google Scholar 

  170. Pelled, G., Bergman, H., and Goelman, G. 2002. Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinson's disease—a functional magnetic resonance imaging study. Eur. J. Neurosci. 15:389–394.

    PubMed  Google Scholar 

  171. Hall, S., Rutledge, J. N., and Schallert, T. 1992. MRI, brain iron and experimental Parkinson's disease. J. Neurol. Sci. 113:198–208.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Young Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, IY., Lee, SP., Guilfoyle, D.N. et al. In Vivo NMR Studies of Neurodegenerative Diseases in Transgenic and Rodent Models. Neurochem Res 28, 987–1001 (2003). https://doi.org/10.1023/A:1023370104289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023370104289

Navigation