Skip to main content
Log in

Review: the human cutaneous microflora and factors controlling colonisation

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The human skin is an unusual habitat for microorganisms in that it is open to contamination from the environment and yet is largely unsuitable for microbial colonisation, unlike mucosal surfaces. The normal microflora of human skin consists of resident colonising species capable of maintaining a viable, reproducing population on the skin and transient contaminating species that cannot sustain growth in the cutaneous environment. The structure of the skin and physiological factors such as hydration, pH, O2 and growth substrates determine the density and diversity of colonisation. Ecological stability is maintained by interactions between the host and the microflora, and between microbial species, and the relative importance of these factors varies between individuals at equivalent sites. The distribution of skin appendages at different sites on the body determines the prevailing environmental conditions, which in turn affects the density and diversity of the microflora. Microbial colonisation is not only restricted to the surface of the skin and there are substantial populations associated with the skin appendages, in particular sebaceous follicles. The aim of this article is to review the factors which determine the composition of the skin microflora under normal conditions and assess their relative importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aderem, A. & Ulevitch, R.J. 2000 Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787.

    Google Scholar 

  • Aly, R., Maibach, H.I., Rahman, R., Shinefield, H.R. & Mandel, A.D. 1975 Correlation of human in vivo and in vitro cutaneous antimicrobial factors. Journal of Infectious Diseases 131, 579–583.

    Google Scholar 

  • Aly, R., Maibach, H.I., Shinefield, H.R. & Strauss, W.G. 1972 Survival of pathogenic microorganisms on human skin. Journal of Investigative Dermatology 58, 205–210.

    Google Scholar 

  • Arakane, K., Ryu, A., Hayashi, C., Masunaga, T., Shinmoto, K., Mashiko, S., Nagano, T. & Hirobe, M. 1996 Singlet oxygen (1 delta g) generation from coproporphyrin in Propionibacterium acnes on irradiation. Biochemical and Biophysical Research Communications 223, 578–582.

    Google Scholar 

  • Ashbee, H.R., Fruin, A., Holland, K.T., Cunliffe, W.J. & Ingham, E. 1994 Humoral immunity to Malassezia furfur serovars A, B and C in patients with pityriasis versicolor, seborrheic dermatitis and controls. Experimental Dermatology 3, 227–233.

    Google Scholar 

  • Ashbee, H.R., Muir, S.R., Cunliffe, W.J. & Ingham, E. 1997 IgG subclasses specific to Staphylococcus epidermidis and Propionibacterium acnes in patients with acne vulgaris. British Journal of Dermatology 136, 730–733.

    Google Scholar 

  • Bergogne-Berezin, E., Decre, D. & Joly-Guillou, M.L. 1993 Opportunistic nosocomial multiply resistant bacterial infections – their treatment and prevention. Journal of Antimicrobial Chemotherapy 32(Suppl A), 39–47.

    Google Scholar 

  • Bibel, D.J., Aly, R. & Shinefield, H.R. 1992 Antimicrobial activity of sphingosines. Journal of Investigative Dermatology 98, 269–273.

    Google Scholar 

  • Bibel, D.J., Aly, R. & Shinefield, H.R. 1995 Topical sphingolipids in antisepsis and antifungal therapy. Clinical and Experimental Dermatology 20, 395–400.

    Google Scholar 

  • Binazzi, M., Boncio, L., Marconi, P. & Pitzurra, M. 1978 Serum and skin lysozyme activity in non-diabetic and diabetic subjects. Archives of Dermatological Research 262, 239–245.

    Google Scholar 

  • Bos, J.D. & Kapsenberg, M.L. 1986 The skin immune system: its cellular constituents and their interaction. Immunology Today 7, 235–240.

    Google Scholar 

  • Cove, J.H., Holland, K.T. & Cunliffe, W.J. 1980 The vitamin requirements of staphylococci isolated from human skin. Journal of Applied Bacteriology 49, 29–37.

    Google Scholar 

  • Cove, J.H., Holland, K.T. & Cunliffe, W.J. 1983a Effects of oxygen concentration on biomass production, maximum specific growth rate and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture. Journal of General Microbiology 129, 3327–3334.

    Google Scholar 

  • Cove, J.H., Kearney, J.N., Holland, K.T. & Cunliffe, W.J. 1983b The vitamin requirements of Staphylococcus cohnii. Journal of Applied Bacteriology 54, 203–208.

    Google Scholar 

  • Cunningham, A.C., Ingham, E. & Gowland, G. 1992 Humoral responses to Malassezia furfur serovars A, B and C in normal individuals of various ages. British Journal of Dermatology 127, 476–481.

    Google Scholar 

  • Dunsche, A., Acil, Y., Siebert, R., Harder, J., Schroder, J.M. & Jepsen, S. 2001 Expression profile of human defensins and antimicrobial proteins in oral tissues. Journal of Oral Pathology and Medicine 30, 154–158.

    Google Scholar 

  • Eady, E.A. & Holland, K.T. 1980 Inhibitors produced by propionibacteria and their possible roles in the ecology of skin bacteria. Proceedings of the Royal Society of Edinburgh (Biol) 79, 193–199.

    Google Scholar 

  • Eady, E.A. & Ingham, E. 1994 Propionibacterium acnes-friend or foe? Reviews in Medical Microbiology 5, 163–173.

    Google Scholar 

  • Emmett, M. & Kloos, W.E. 1975 Amino acid requirements of staphylococci isolated from human skin. Canadian Journal of Microbiology 21, 729–733.

    Google Scholar 

  • Ezoe, K. & Katsumata, M. 1990 Immunohistochemical study of lysozyme in human apocrine glands. Journal of Dermatology 17, 159–63.

    Google Scholar 

  • Faergemann, J. 1983 Antibodies to Pityrosporum orbiculare in patients with tinea versicolor and controls of various ages. Journal of Investigative Dermatology 80, 133–135.

    Google Scholar 

  • Faergemann, J. & Fredriksson, T. 1980 Age incidence of Pityrosporum orbiculare on human skin. Acta Dermato-Venereologica 60, 531–533.

    Google Scholar 

  • Farrior, J.W. & Kloos, W.E. 1975 Amino acid and vitamin requirements of Micrococcus species isolated from human skin. International Journal of Systematic Bacteriology 25, 80–82.

    Google Scholar 

  • Ferguson, D.A. Jr. & Cummins, C.S. 1978 Nutritional requirements of anaerobic coryneforms. Journal of Bacteriology 135, 858–867.

    Google Scholar 

  • Frohm, M., Agerberth, B., Ahangari, G., Stahle-Backdahl, M., Liden, S., Wigzell, H. & Gudmundsson, G.H. 1997 The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. Journal of Biological Chemistry 272, 15,258–15,263.

    Google Scholar 

  • Fulton, C., Anderson, G.M., Zasloff, M., Bull, R. & Quinn, A.G. 1997 Expression of natural peptide antibiotics in human skin. Lancet 350, 1750–1751.

    Google Scholar 

  • Futsaether, C.M., Kjeldstad, B. & Johnsson, A. 1993 Measurement of the intracellular pH of Propionibacterium acnes: comparison between the fluorescent probe BCECF and 31P-NMR spectroscopy. Canadian Journal of Microbiology 39, 180–186.

    Google Scholar 

  • Gowland, G., Ward, R.M., Holland, K.T. & Cunliffe, W.J. 1978 Cellular immunity to P. acnes in the normal population and patients with acne vulgaris. British Journal of Dermatology 99, 43–47.

    Google Scholar 

  • Greenman, J. & Holland, K.T. 1985 Effects of dilution rate on biomass and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture. Journal of General Microbiology 131, 1619–1624.

    Google Scholar 

  • Gribbon, E.M., Shoesmith, J.G., Cunliffe, W.J. & Holland, K.T. 1994 The microaerophily and photosensitivity of Propionibacterium acnes. Journal of Applied Bacteriology 77, 583–590.

    Google Scholar 

  • Guillot, J. & Gueho, E. 1995 The diversity of Malassezia yeasts con.rmed by rRNA sequence and nuclear DNA comparisons. Antonie Van Leeuwenhoek 67, 297–314.

    Google Scholar 

  • Gutteridge, J.M., Lamport, P. & Dormandy, T.L. 1976 The antibacterial effect of water-soluble compounds from autoxidising linolenic acid. Journal of Medical Microbiology 9, 105–110.

    Google Scholar 

  • Harder, J., Bartels, J., Christophers, E. & Schroder, J.M. 1997 A peptide antibiotic from human skin. Nature 387, 861.

    Google Scholar 

  • Harder, J., Bartels, J., Christophers, E. & Schroder, J.M. 2001 Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. Journal of Biological Chemistry 276, 5707–5713.

    Google Scholar 

  • Heczko, P.B., Klein, A., Kasprowicz, A. & Pulverer, G. 1978 Use of a phage set for the ecological typing of coagulase-negative staphylococci. Zentralblatt für Bakteriologie (Orig A) 241, 157–164.

    Google Scholar 

  • Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K. & Akira, S. 2000 A toll-like receptor recognizes bacterial DNA. Nature 408, 740–745.

    Google Scholar 

  • Herbert, D., Elsworth, R. & Telling, R.C. 1956 Continuous culture of bacteria, a theoretical and experimental study. Journal of General Microbiology 14, 601–622.

    Google Scholar 

  • Hiemstra, P.S., Maassen, R.J., Stolk, J., Heinzel-Wieland, R., Steffens, G.J. & Dijkman, J.H. 1996 Antibacterial activity of antileukoprotease. Infection and Immunity 64, 4520–4524.

    Google Scholar 

  • Higaki, S., Kitagawa, T., Kagoura, M., Morohashi, M. & Yamagishi, T. 2000 Correlation between Propionibacterium acnes biotypes, lipase activity and rash degree in acne patients. Journal of Dermatology 27, 519–522.

    Google Scholar 

  • Holland, K.T. & Bojar, R.A. 2001 The Cutaneous Propionibacteria. In Molecular Medical Microbiology. Chapter 49, ed. Sussman, M. pp. 1039–1055. Academic Press. ISBN 0-12-677530-3.

  • Holland, D.B. & Cunliffe, W.J. 1982 Skin surface and open comedone pH in acne patients. cta Dermato-Venereologica 63, 155–158.

    Google Scholar 

  • Holland, D.B., Ingham, E., Gowland, G. & Cunliffe, W.J. 1986 IgG subclasses in acne vulgaris. British Journal of Dermatology 114, 349–351.

    Google Scholar 

  • Holland, K.T., Cunliffe, W.J. & Eady, E.A. 1979a Intergeneric and intrageneric inhibition between strains of Propionibacterium acnes and micrococcaceae, particularly Staphylococcus epidermidis, isolated from normal skin and acne lesions. Journal of Medical Microbiology 12, 71–82.

    Google Scholar 

  • Holland, K.T., Greenman, J. & Cunliffe, W.J. 1979b Growth of cutaneous propionibacteria on synthetic medium: growth yields and exoenzyme production. Journal of Applied Bacteriology 47, 383–394.

    Google Scholar 

  • Holland, K.T., Marshall, J. & Taylor, D. 1992 The effect of dilution rate and pH on biomass and proteinase production by Micrococcus sedentarius grown in continuous culture. Journal of Applied Bacteriology 72, 429–434.

    Google Scholar 

  • Hubner, J. & Kropec, A. 1995 Cross infections due to coagulase negative staphylococci in high-risk patients. Zentralblatt für Bakteriologie 283, 169–174.

    Google Scholar 

  • Ingham, E., Gowland, G., Ward, R.M., Holland, K.T. & Cunliffe, W.J. 1987 Antibodies to P. acnes and P. acnes exocellular enzymes in the normal population at various ages and in patients with acne vulgaris. British Journal of Dermatology 116, 805–812.

    Google Scholar 

  • Ingham, E., Holland, K.T., Gowland, G. & Cunliffe, W.J. 1981 Partial purification and characterization of lipase (EC 3.1.1.3) from Propionibacterium acnes. Journal of General Microbiology 124, 393–401.

    Google Scholar 

  • Ingham, E., Holland, K.T., Gowland, G. & Cunliffe, W.J. 1983 Studies of extracellular proteolytic activity produced by Propionibacterium acnes. Journal of Applied Bacteriology 54, 263–271.

    Google Scholar 

  • Jakab, E., Zbinden, R., Gubler, J., Ruef, C., von Graevenitz, A. & Krause, M. 1996 Severe infections caused by Propionibacterium acnes: an underestimated pathogen in late postoperative infections. Yale Journal of Biology and Medicine 69, 477–482.

    Google Scholar 

  • Jappe, U., Ingham, E., Henwood, J. & Holland, K.T. 2002 Propionibacterium acnes and inflammation in acne: P. acnes has T-cell mitogenic activity. British Journal of Dermatology 146, 202–209.

    Google Scholar 

  • Johnsson, A., Kjeldstad, B. & Melo, T.B. 1987 Fluorescence from pilosebaceous follicles. Archives of Dermatological Research 279, 190–193.

    Google Scholar 

  • Jong, E.C., Ko, H.L. & Pulverer, G. 1975 Studies on bacteriophages of Propionibacterium acnes. Medical Microbiology and Immunology 161, 263–271.

    Google Scholar 

  • Kabara, J.J. 1978 Structure-function relationships of surfactants as antimicrobial agents. Journal of the Society of Cosmetic Chemists 29, 733–741.

    Google Scholar 

  • Kabara, J.J., Swieczkowski, D.M., Conley, A.J. & Truant, J.P. 1972 Fatty acids and derivatives as antimicrobial agents. Antimicrobial Agents and Chemotherapy 2, 23–28.

    Google Scholar 

  • Karvonen, S.L., Räsänen, L., Cunliffe, W.J., Holland, K.T., Karvonen, J. & Reunala, T. 1994 Delayed hypersensitivity to Propionibacterium acnes in patients with severe nodular acne and acne fulminans. Dermatology 189, 344–349.

    Google Scholar 

  • Kearney, J.N., Harnby, D., Gowland, G. & Holland, K.T. 1984a The follicular distribution and abundance of resident bacteria on human skin. Journal of General Microbiology 130, 797–801.

    Google Scholar 

  • Kearney, J.N., Ingham, E., Cunliffe, W.J. & Holland, K.T. 1984b Correlations between human skin bacteria and skin lipids. British Journal of Dermatology 110, 593–599.

    Google Scholar 

  • Kesavan, S., Holland, K.T. & Ingham, E. 2000 The effects of lipid extraction on the immunomodulatory activity of Malassezia species in vitro. Medical Mycology 38, 239–247.

    Google Scholar 

  • Keyworth, N., Millar, M.R. & Holland, K.T. 1992 Development of cutaneous microflora in premature neonates. Archives of Disease in Childhood 67, 797–801.

    Google Scholar 

  • Kjeldstad, B. & Johnsson, A. 1986 An action spectrum for blue and near ultraviolet inactivation of Propionibacterium acnes; with emphasis on a possible porphyrin photosensitization. Photochemistry and Photobiology 43, 67–70.

    Google Scholar 

  • Kjeldstad, B., Johnsson, A. & Sandberg, S. 1984 Influence of pH on porphyrin production in Propionibacterium acnes. Archives of Dermatological Research 276, 396–400.

    Google Scholar 

  • Kjeldstad, B. 1987 Different photoinactivation mechanisms in Propionibacterium acnes for near-ultraviolet and visible light. Photochemistry and Photobiology 46, 363–366.

    Google Scholar 

  • Kjeldstad, B. 1984 Photoinactivation of Propionibacterium acnes by near-ultraviolet light. Zeitschrift für Naturforschung. Section C 39, 300–302.

    Google Scholar 

  • Klenha, J. & Krs, V. 1967 Lysozyme in mouse and human skin. Journal of Investigative Dermatology 49, 396–399.

    Google Scholar 

  • Kloos, W.E. & Bannerman, T.L. 1994 Update on clinical significance of coagulase-negative staphylococci. Clinical Microbiology Reviews 7, 117–140.

    Google Scholar 

  • Kloos, W.E. & Musselwhite, M.S. 1975 Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. Applied Microbiology 30, 381–385.

    Google Scholar 

  • Ko, H.L., Heczko, P.B. & Pulverer, G. 1978 Differential susceptibility of Propionibacterium acnes, P. granulosum and P. avidum to free fatty acids. Journal of Investigative Dermatology 71, 363–365.

    Google Scholar 

  • Koujima, I., Hayashi, H., Tomochika, K., Okabe, A. & Kanemasa, Y. 1978 Adaptational change in proline and water content of Staphylococcus aureus after alteration of environmental salt concentration. Applied and Environmental Microbiology 35, 467–470.

    Google Scholar 

  • Krieg, A.M., Yi, A.K., Matson, S., Waldschmidt, T.J., Bishop, G.A., Teasdale, R., Koretzky, G.A. & Klinman, D.M. 1995 CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374, 546–549.

    Google Scholar 

  • Kupper, T.S. 1990 The activated keratinocyte: a model for inducible cytokine production by non-bone marrow-derived cells in cutaneous inflammatory and immune responses. Journal of Investigative Dermatology 94, 146S–150S.

    Google Scholar 

  • Lacey, R.W. & Lord, V.L. 1981 Sensitivity of staphylococci to fatty acids: novel inactivation of linolenic acid by serum. Journal of Medical Microbiology 14, 41–49.

    Google Scholar 

  • Leary, T., Jones, P.L., Appleby, M., Blight, A., Parkinson, K. & Stanley, M. 1992 Epidermal keratinocyte self-renewal is dependent upon dermal integrity. Journal of Investigative Dermatology 99, 422–430.

    Google Scholar 

  • Lee, W.L., Shalita, A.R. & Poh-Fitzpatrick, M.B. 1978 Comparative studies of porphyrin production in Propionibacterium acnes and Propionibacterium granulosum. Journal of Bacteriology 133, 811–815.

    Google Scholar 

  • Leeming, J.P., Holland, K.T. & Cunliffe, W.J. 1984 The microbial ecology of pilosebaceous units isolated from human skin. Journal of General Microbiology 130, 803–807.

    Google Scholar 

  • Leeming, J.P., Notman, F.H. & Holland, K.T. 1989 The distribution and ecology of Malassezia furfur and cutaneous bacteria on human skin. Journal of Applied Bacteriology 67, 47–52.

    Google Scholar 

  • Leeming, J.P. & Notman, F.H. 1987 Improved methods for isolation and enumeration of Malassezia furfur from human skin. Journal of Clinical Microbiology 25, 2017–2019.

    Google Scholar 

  • Leyden, J.J., McGinley, K.J., Mills, O.H. & Kligman, A.M. 1975 Agerelated changes in the resident bacterial flora of the human face. Journal of Investigative Dermatology 65, 379–381.

    Google Scholar 

  • Leyden, J.J., McGinley, K.J., Nordstrom, K.M. & Webster, G.F. 1987 Skin microflora. Journal of Investigative Dermatology 88, 65s–72s.

    Google Scholar 

  • Lipford, G.B., Heeg, K. & Wagner, H. 1998 Bacterial DNA as immune cell activator. Trends in Microbiology 6, 496–500.

    Google Scholar 

  • Longshaw, C.M., Farrell, A.M., Wright, J.D. & Holland, K.T. 2000 Identification of a second lipase gene, gehD, in Staphylococcus epidermidis: comparison of sequence with those of other staphylococcal lipases. Microbiology 146, 1419–1427.

    Google Scholar 

  • Malcolm, S.A. & Hughes, T.C. 1980 The demonstration of bacteria on and within the stratum corneum using scanning electron microscopy. British Journal of Dermatology 102, 267–275.

    Google Scholar 

  • Marples, R.R. & McGinley, K.J. 1974 Corynebacterium acnes and other anaerobic diphtheroids from human skin. Journal of Medical microbiology 7, 349–357.

    Google Scholar 

  • Marshall, B.J., Ohye, D.F. & Christian, J.H. 1971 Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium. Applied Microbiology 21, 363–364.

    Google Scholar 

  • Marshall, J., Leeming, J.P. & Holland, K.T. 1987 The cutaneous microbiology of normal human feet. Journal of Applied Bacteriology 62, 139–146.

    Google Scholar 

  • Mayser, P., Imkampe, A., Winkeler, M. & Papavassilis, C. 1998 Growth requirements and nitrogen metabolism of Malassezia furfur. Archives of Dermatological Research 290, 277–282.

    Google Scholar 

  • McGinley, K.J., Labows, J.N., Zechman, J.M., Nordstrom, K.M., Webster, G.F. & Leyden, J.J. 1985a Analysis of cellular components, biochemical reactions, and habitat of human cutaneous lipophilic diphtheroids. Journal of Investigative Dermatology 85, 374–377.

    Google Scholar 

  • McGinley, K.J., Labows, J.N., Zeckman, J.M., Nordstrom, K.M., Webster, G.F. & Leyden, J.J. 1985b Pathogenic JK group corynebacteria and their similarity to human cutaneous lipophilic diphtheroids. Journal of Infectious Diseases 152, 801–806.

    Google Scholar 

  • Medzhitov, R. & Janeway, C. Jr. 2000 Innate immune recognition: mechanisms and pathways. Immunological Reviews 173, 89–97.

    Google Scholar 

  • Melo, T.B., Reisaeter, G., Johnsson, A. & Johnsson, M. 1985 Photodestruction of Propionibacterium acnes porphyrins. Zeitschrift für Naturforschung. Section C 40, 125–128.

    Google Scholar 

  • Metze, D., Kersten, A., Jurecka, W. & Gebhart, W. 1991 Immunoglobulins coat microorganisms of skin surface: a comparative immunohistochemical and ultrastructural study of cutaneous and oral microbial symbionts. Journal of Investigative Dermatology 96, 439–445.

    Google Scholar 

  • Midgley, G. 1985 Comparison of Pityrosporum (Malassezia) isolates by morphology and immunoelectrophoresis. British Journal of Dermatology 113, 783–784.

    Google Scholar 

  • Naidoo, J. 1981 Effect of pH on inhibition of plasmid-carrying cultures of Staphylococcus aureus by lipids. Journal of General Microbiology 124, 173–179.

    Google Scholar 

  • Nicolas, P. & Mor, A. 1995 Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Annual Review of Microbiology 49, 277–304.

    Google Scholar 

  • Noble, W.C. 1981 Microbiology of Human Skin. London: Lloyd-Luke. ISBN 0-85324-150-3.

    Google Scholar 

  • Noble, W.C. 1968 Observations on the surface flora of the skin and on the skin pH. British Journal of Dermatology 80, 279–281.

    Google Scholar 

  • Nordstrom, N.K. & Noble, W.C. 1985 Application of computer taxonomic techniques to the study of cutaneous propionibacteria and skin-surface lipid. Archives of Dermatological Research 278, 107–113.

    Google Scholar 

  • Ogawa, H. & Miyazaki, H. 1972 Immunochemical studies on the human skin lysozyme. Journal of Investigative Dermatology 58, 59–62.

    Google Scholar 

  • Ogawa, H., Miyazaki, H. & Kimura, M. 1971 Isolation and characterization of human skin lysozyme. Journal of Investigative Dermatology 57, 111–116.

    Google Scholar 

  • Okada, T., Konishi, H., Ito, M., Nagura, H. & Asai, J. 1988 Identification of secretory immunoglobulin A in human sweat and sweat glands. Journal of Investigative Dermatology 90, 648–651.

    Google Scholar 

  • O'Neill, T.M., Hone, R. & Blake, S. 1988 Prosthetic valve endocarditis caused by Propionibacterium acnes. British Medical Journal (Clinical Research ed.) 296, 1444.

    Google Scholar 

  • Puhvel, S.M. & Reisner, R.M. 1970 Effect of fatty acids on the growth of Corynebacterium acnes in vitro. Journal of Investigative Dermatology 54, 48–52.

    Google Scholar 

  • Puhvel, S.M., Hoffman, I.K. & Sternberg, T.H. 1966 Corynebacterium acnes. Presence of complement fixing antibodies to corynebacterium acnes in the sera of patients with acne vulgaris. Archives of Dermatology 93, 364–366.

    Google Scholar 

  • Puhvel, S.M., Warnick, M.A. & Sternberg, T.H. 1965 Levels of antibody to Staphylococcus epidermidis in patients with acne vulgaris. Archives of Dermatology 92, 88–90.

    Google Scholar 

  • Ramstad, S., Futsaether, C.M. & Johnsson, A. 1997 Porphyrin sensitization and intracellular calcium changes in the prokaryote Propionibacterium acnes. Journal of Photochemistry and Photobiology 40, 141–148.

    Google Scholar 

  • Randall, L.L. & Hardy, S.J. 1984 Export of protein in bacteria. Microbiological Reviews 48, 290–298.

    Google Scholar 

  • Rosenstein, R. & Gotz, F. 2000 Staphylococcal lipases: biochemical and molecular characterization. Biochimie 82, 1005–1014.

    Google Scholar 

  • Roszkowski, W., Roszkowski, K., Ko, H.L., Beuth, J. & Jeljaszewicz, J. 1990 Immunomodulation by propionibacteria. Zentralblatt für Bakteriologie 274, 289–298.

    Google Scholar 

  • Rupp, M.E. & Archer, G.L. 1994 Coagulase-negative staphylococci: pathogens associated with medical progress. Clinical Infectious Diseases 19, 231–243.

    Google Scholar 

  • Schierholz, J.M. & Beuth, J. 2001 Implant infections: a haven for opportunistic bacteria. Journal of Hospital Infection 49, 87–93.

    Google Scholar 

  • Schittek, B., Hipfel, R., Sauer, B., Bauer, J., Kalbacher, H., Stevanovic, S., Schirle, M., Schroeder, K., Blin, N., Meier, F., Rassner, G. & Garbe, C. 2001 Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nature Immunology 2, 1133–1137.

    Google Scholar 

  • Schröder, J.M. 1999 Epithelial antimicrobial peptides: innate local host response elements. Cellular and Molecular Life Sciences 56, 32–46.

    Google Scholar 

  • Schröder, J.M. & Harder, J. 1999 Human beta-defensin-2. International Journal of Biochemistry & Cell Biology 31, 645–651.

    Google Scholar 

  • Sharpe, M.E., Law, B.A. & Phillips, B.A. 1976 Coryneform bacteria producing methanethiol. Journal of General Microbiology 94, 430–435.

    Google Scholar 

  • Shifrine, M. & Marr, A.G. 1963 The requirements of fatty acids by Pityrosporum ovale. Journal of General Microbiology 32, 263–270.

    Google Scholar 

  • Shimada, S. & Katz, S.I. 1988 The skin as an immunologic organ. Archives of Pathology and Laboratory Medicine 112, 231–234.

    Google Scholar 

  • Simon, J.C., Cruz, P.D. Jr., Tigelaar, R.E., Sontheimer, R.D. & Bergstresser, P.R. 1991 Adhesion molecules CD11a, CD18, and ICAM-1 on human epidermal Langerhans cells serve a functional role in the activation of alloreactive T cells. Journal of Investigative Dermatology 96, 148–511.

    Google Scholar 

  • Smith, R.F. 1969 Characterization of human cutaneous lipophilic diphtheroids. Journal of General Microbiology 55, 433–443.

    Google Scholar 

  • Smith, R.F. 1970 Fatty acid requirements of human cutaneous lipophilic corynebacteria. Journal of General Microbiology 60, 259–263.

    Google Scholar 

  • Sohnle, P.G., Collins-Lech, C. & Huhta, K.E. 1983 Class-specific antibodies in young and aged humans against organisms producing superficial fungal infections. British Journal of Dermatology 108, 69–76.

    Google Scholar 

  • Somerville, D.A. & Noble, W.C. 1973 Microcolony size of microbes on human skin. Journal of Medical Microbiology 6, 323–328.

    Google Scholar 

  • Stackebrandt, E., Koch, C., Gvozdiak, O. & Schumann, P. 1995 Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkoniagen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. International Journal of Systematic Bacteriology 45, 682–692.

    Google Scholar 

  • Stevenson, K.B. 1994 A pacemaker wire thrombus infected with Propionibacterium acnes. Infectious Diseases in Clinical Practice 3, 447–450.

    Google Scholar 

  • Ushijima, T., Takahashi, M. & Ozaki, Y. 1984 Acetic, propionic, and oleic acid as the possible factors influencing the predominant residence of some species of Propionibacterium and coagulasenegative Staphylococcus on normal human skin. Canadian Journal of Microbiology 30, 647–652.

    Google Scholar 

  • Vesterberg, O., Wadstrom, T., Vesterberg, K., Svensson, H. & Malmgren, B. 1967 Studies on extracellular proteins from Staphylococcus aureus. I. Separation and characterization of enzymes and toxins by isoelectric focusing. Biochimica et Biophysica Acta 133, 435–445.

    Google Scholar 

  • Webster, G.F., Leyden, J.J., Norman, M.E. & Nilsson, U.R. 1978 Complement activation in acne vulgaris: in vitro studies with Propionibacterium acnes and Propionibacterium granulosum. Infection & Immunity 22, 523–952.

    Google Scholar 

  • White, S.H., Wimley, W.C. & Selsted, M.E. 1995 Structure, function, and membrane integration of defensins. Current Opinion in Structural Biology 5, 521–527.

    Google Scholar 

  • Wiedow, O., Harder, J., Bartels, J., Streit, V. & Christophers, E. 1998 Antileukoprotease in human skin: an antibiotic peptide constitutively constitutively produced by keratinocytes. Biochemical and Biophysical Research Communications 248, 904–909.

    Google Scholar 

  • Wiedow, O., Young, J.A., Davison, M.D. & Christophers, E. 1993 Antileukoprotease in psoriatic scales. Journal of Investigative Dermatology 101, 305–309.

    Google Scholar 

  • Williams, M.J., Rodriguez, A., Kimbrell, D.A. & Eldon, E.D. 1997 The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense. The EMBO Journal 16, 6120–6130.

    Google Scholar 

  • Williamson, P. & Kligman, A.M. 1965 A new method for the quantitative investigation of cutaneous bacteria. Journal of Investigative Dermatology 45, 498–503.

    Google Scholar 

  • Wingens, M., van Bergen, B.H., Hiemstra, P.S., Meis, J.F., van Vlijmen-Willems, I.M., Zeeuwen, P.L., Mulder, J., Kramps, H.A., van Ruissen, F. & Schalkwijk, J. 1998 Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes. Journal of Investigative Dermatology 111, 996–1002.

    Google Scholar 

  • Zanetti, M., Gennaro, R. & Romeo, D. 1995 Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Letters 374, 1–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bojar, R., Holland, K. Review: the human cutaneous microflora and factors controlling colonisation. World Journal of Microbiology and Biotechnology 18, 889–903 (2002). https://doi.org/10.1023/A:1021271028979

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021271028979

Navigation