Skip to main content
Log in

A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Phase pure hydroxyapatite (HA) and a 0.8 wt % silicon substituted hydroxyapatite (SiHA) were prepared by aqueous precipitation methods. Both HA and SiHA were processed into granules 0.5–1.0 mm in diameter and sintered at 1200 °C for 2 h. The sintered granules underwent full structural characterization, prior to implantation into the femoral condyle of New Zealand White rabbits for a period of 23 days. The results show that both the HA and SiHA granules were well accepted by the host tissue, with no presence of any inflammatory cells. New bone formation was observed directly on the surfaces and in the spaces between both HA and SiHA granular implants. The quantitative histomorphometry results indicate that the percentage of bone ingrowth for SiHA (37.5%±5.9) was significantly greater than that for phase pure HA (22.0%±6.5), in addition the percentage of bone/implant coverage was significantly greater for SiHA (59.8%±7.3) compared to HA (47.1%±3.6). These findings indicate that the early in vivo bioactivity of hydroxyapatite was significantly improved with the incorporation of silicate ions into the HA structure, making SiHA an attractive alternative to conventional HA materials for use as bone substitute ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Blumenthal, F. Betts and A. S. Posner, Calcif. Tissue Res. 18 (1975) 81.

    Google Scholar 

  2. W. D. Armstrong and L. Singer, Clinical Orthopaedics 38 (1965) 175.

    Google Scholar 

  3. A. E. Sobel, M. Rockenmacher and B. Kramer, J. Biol. Chem. 235 (1960) 2502.

    Google Scholar 

  4. E. M. Carlisle, Science 167 (1970) 179.

    Google Scholar 

  5. E. M. Carlisle, Calc. Tissue Int. 33 (1981) 27.

    Google Scholar 

  6. K. Schwarz and D. B. Milne, Nature 239 (1972) 333.

    Google Scholar 

  7. L. L. Hench, J. Phys. 43 (1982) 625.

    Google Scholar 

  8. T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, T. Kitsugi and T. Yamamuro, J. Biomed. Mater. Res. 24 (1990) 331.

    Google Scholar 

  9. L. L. Hench and A. E. Clarke, in “Biocompatibility of Orthopaedic Implants”, edited by D. F. Williams (CRC Press, Inc., 1982) Chapter 6.

  10. L. L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  11. A. J. Ruys, J. Aust. Ceram. Soc. 29 (1993) 71.

    Google Scholar 

  12. K. Sugiyama, T. Suzuki and T. Satoh, J. Antibact. Antifung. Agents 23 (1995) 67.

    Google Scholar 

  13. Y. Tanizawa and T. Suzuki, Phosphorus Res. Bull. 4 (1994) 83.

    Google Scholar 

  14. I. R. Gibson, S. M. Best and W. Bonfield, J. Biomed. Mater. Res. 44 (1999) 422.

    Google Scholar 

  15. I. R. Gibson, J. Huang, S. M. Best and W. Bonfield, in “Proceedings of the 12th International Symposium on Ceramics in Medicine, Nara, Japan, October 1999”, edited by H. Oghushi, G. W. Hastings and T. Yoshikawa (World Scientific Publishing Co., Singapure, 1999) p. 191.

    Google Scholar 

  16. M. Akao, H. Aoki and K. Kato, J. Mater. Sci. 28 (1981) 809.

    Google Scholar 

  17. M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. F. Kay and R. H. Doremus, ibid. 11 (1976) 2027.

    Google Scholar 

  18. N. Patel, I. R. Gibson, S. Ke, S. M. Best and W. Bonfield, J. Mater. Sci. Mater. in Med. 12 (2001) 181.

    Google Scholar 

  19. PDF card no. 09-0432, ICDD, Newton Square, Pennsylvania, USA.

  20. E. R. Weibel and H. E. Elias, in “Quantitative methods in morphology” (Springer-Verlag, Berlin, 1967).

    Google Scholar 

  21. W. A. Merz and R. K. Schenk, Acta. Anat. 76 (1970) 1.

    Google Scholar 

  22. K. A. Hing, J. C. Merry, I. R. Gibson, L. Di Silvio, S. M. Best and W. Bonfield, in “Proceedings of the 12th International Symposium on Ceramics in Medicine, Nara, Japan, October 1999”, edited by H. Oghushi, G. W. Hastings and T. Yoshikawa (World Scientific Publishing Co. Singapure) p. 195.

  23. T. J. Webster, C. Ergun, R. H. Doremus and R. Bizios, J. Biomed. Mater. Res. 59 (2002) 312.

    Google Scholar 

  24. H. Oonishi, L. L. Hench, J. Wilson, F. Sugihara, E. Tsuji, S. Kushitani and H. Iwaki, ibid. 44 (1999) 31.

    Google Scholar 

  25. N. Ikeda, K. Kawanabe and T. Nakamura, Biomaterials 20 (1999) 1087.

    Google Scholar 

  26. J. D. De Bruijn, Y. P. Bovell, J. E. Davies and C. A. Van Blitterswijk, J. Biomed. Mater. Res. 28 (1994) 105.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, N., Best, S.M., Bonfield, W. et al. A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. Journal of Materials Science: Materials in Medicine 13, 1199–1206 (2002). https://doi.org/10.1023/A:1021114710076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021114710076

Keywords

Navigation