Skip to main content

Advertisement

Log in

Monoamine Neurotransmitters and Their Metabolites in the Mature Rabbit Brain Following Induction of Hydrocephalus

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Functional and behavioral disturbances associated with hydrocephalus may be due in part to altered neurotransmitter function in the brain. Hydrocephalus was induced in adult rabbits by injection of silicone oil into the cisterna magna. These and controls were killed 3 days, 1 and 4 weeks post-injection. Tissue concentrations of norepinephrine, epinephrine, serotonin, dopamine, and the metabolites 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), and 3,4-dihydroxyphenylacetic acid (DOPAC) levels were determined in fifteen brain regions using HPLC. There were decreases in hypothalamic and medullary dopamine, transient decreases in basal ganglia serotonin, increases in thalamic noradrenaline, and increases in hypothalamic and thalamic epinephrine. Changes in the primary neurotransmitters may be attributable to damage of their axonal projection systems. Metabolite concentrations increased in the cerebrum. Reduced clearance of extracellular fluid which accompanies cerebrospinal fluid stasis may explain the accumulation of metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Mori, K., Shimada, J., Kurisaka, M., Sato, K., and Watanabe, K. 1995. Classification of hydrocephalus and outcome of treatment. Brain Dev. 17:338-348.

    PubMed  Google Scholar 

  2. Katzman, R. 1977. Normal pressure hydrocephalus. Contemp. Neurol. Ser. 15:69-92.

    PubMed  Google Scholar 

  3. Laurence, K. M., and Coates, S. 1962. Further thoughts on the natural history of hydrocephalus. Dev. Med. Child Neurol. 4:263-267.

    PubMed  Google Scholar 

  4. Del Bigio, M. R. 1993. Neuropathological changes caused by hydrocephalus. Acta Neuropathol. 85:573-585.

    PubMed  Google Scholar 

  5. Hartmann, J., Kunig, G., and Riederer, P. 1993. Involvement of transmitter systems in neuropsychiatric diseases. Acta Neurol. Scand. (Suppl.) 146:18-21.

    Google Scholar 

  6. Del Bigio, M. R. 1989. Hydrocephalus-induced changes in the composition of cerebrospinal fluid. Neurosurgery 25:416-423.

    PubMed  Google Scholar 

  7. Iacono, R. P., Sandyk, R., Borovich, B., and Labadie, E. 1987. The opioid system and the reversibility of the dementia in normal pressure hydrocephalus. Intern. J. Neurosci. 36:119-121.

    Google Scholar 

  8. Inagawa, T., Ishikawa, S., and Uozumi, T. 1980. Homovanillic acid and 5-hydroxyindoleacetic acid in the ventricular CSF of comatose patients with obstructive hydrocephalus. J. Neurosurg. 52:635-641.

    PubMed  Google Scholar 

  9. Chovanes, G. I., McAllister, J. P., Lamperti, A. A., Salotto, A. G., and Truex, R. C. 1988. Monoamine alterations during experimental hydrocephalus in neonatal rats. Neurosurgery 22:86-91.

    PubMed  Google Scholar 

  10. Ehara, K., Matsumoto, S., Yoshida, N., Kuno, T., and Tanaka, C. 1982. Ascending norepinephrine pathways impaired in experimental hydrocephalus. Jap. J. Pharmacol. 32:205-208.

    PubMed  Google Scholar 

  11. Ehara, K., Tanaka, C., Tamaki, N., and Matsumoto, S. 1991. Changes in the hypothalamic and brain stem catecholaminergic systems in experimental hydrocephalus: a histochemical observation. 75-87 75–87, in Matsumoto, S., and Tamaki, N. (eds.), Hydrocephalus: Pathogenesis and Treatment, Springer-Verlag, Tokyo.

    Google Scholar 

  12. Higashi, K., Asahisa, H., Ueda, N., Kobayashi, K., Hara, K., and Noda, Y. 1986. Cerebral blood flow and metabolism in experimental hydrocephalus. Neurol. Res. 8:169-176.

    PubMed  Google Scholar 

  13. Miyake, H., Eghwrudjakpor, P., Sakamoto, T., Kurisaka, M., and Mori, K. 1991. Neurotransmitter changes in hydrocephalus: effects of cerebral metabolic activator on kaolin-induced hydrocephalus. 68-74 68–74, in Matsumoto, S., and Tamaki, N. (eds.). Hydrocephalus: Pathogenesis and Treatment, Springer-Verlag, Tokyo.

    Google Scholar 

  14. Miyake, H., Eghwrudjakpor, P. O., Sakamoto, T., and Mori, K. 1992. Catecholamine alterations in experimental hydrocephalus. Child's Nerv. Syst. 8:243-246.

    Google Scholar 

  15. Lovely, T. J., McAllister, J. P., Miller, D. W., Lamperti, A. A., and Wolfson, B. J. 1989. Effects of hydrocephalus and surgical decompression on cortical norepinephrine levels in neonatal cats. Neurosurgery 24:43-52.

    PubMed  Google Scholar 

  16. Edvinsson, L., Nielsen, K. C., Owman, C., Rosengren, E., and West, K. A. 1972. Concomitant fall in brain dopamine and homovanillic acid in hydrocephalic rabbits. Exp. Neurol. 37:647-649.

    Google Scholar 

  17. Miwa, S., Inagaki, C., Fujiwara, M., and Takaori, S. 1982. The activities of noradrenergic and dopaminergic neuron systems in experimental hydrocephalus. J. Neurosurg. 57:67-73.

    PubMed  Google Scholar 

  18. Owman, C., Rosengren, E., and West, K. A. 1971. Influence of various intracranial pressure levels on the concentration of certain arylethylamines in rabbit brain. Experientia 27:1036-1037.

    PubMed  Google Scholar 

  19. Gispen, W. H., Schotman, P., and De Kloet, E. R. 1972. Brain RNA and hypophysectomy: A topographical study. Neuroendocrinology 9:285-296.

    PubMed  Google Scholar 

  20. Del Bigio, M. R., and Bruni, J. E. 1987. Cerebral water content in silicone oil-induced hydrocephalic rabbits. Pediatr. Neurosci. 13:72-77.

    PubMed  Google Scholar 

  21. Gerlo, E., and Malfait, R. 1985. High-performance liquid chromatographic assay of free norepinephrine, epinephrine, dopamine, vanillymandelic acid and homovanillic acid. J. Chromatogr. 343:9-20.

    PubMed  Google Scholar 

  22. Del Bigio, M. R., and Bruni, J. E. 1988. Periventricular pathology in hydrocephalic rabbits before and after shunting. Acta Neuropathol. 77:186-195.

    PubMed  Google Scholar 

  23. Reader, T. A., Dewar, K. M., and Grondin, L. 1989. Distribution of monoamines and metabolities in rabbit neostriatum, hippocampus and cortex. Brain Res. Bull. 23:237-247.

    PubMed  Google Scholar 

  24. Dewar, K. M., Reader, T. A., Grondin, L., and Descarries, L. 1991. [3H]paroxetine binding and serotonin content of rat and rabbit cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region. Synapse 9:14-26.

    PubMed  Google Scholar 

  25. Levitt, P., Rakic, P., and Goldman-Rakic, P. S. 1984. Comparative assessment of monoamine afferents in mammalian cerebral cortex. 41-59 41–59, in Descarries, L., Reader, T. R., and Jasper, H. H. (eds.), Monoamine Innervation of the Cerebral Cortex, Alan R. Liss, Inc., New York.

    Google Scholar 

  26. Nieuwenhuys, R. 1985. Chemoarchitecture of the Brain., Springer-Verlag, Berlin 246.

    Google Scholar 

  27. Del Bigio, M. R., and Bruni, J. E. 1987. Chronic intracranial pressure monitoring in conscious hydrocephalic rabbits. Pediatr. Neurosci. 13:67-71.

    PubMed  Google Scholar 

  28. Del Bigio, M. R., and Bruni, J. E. 1991. Silicone oil-induced hydrocephalus in the rabbit. Child's Nerv. Syst. 7:79-84.

    Google Scholar 

  29. Del Bigio, M. R., Cardoso, E. R., and Halliday, W. C. 1997. Neuropathological changes in chronic adult hydrocephalus: cortical biopsies and autopsy findings. Can. J. Neurol. Sci. 24:121-126.

    PubMed  Google Scholar 

  30. Kawano, T., Tsujimura, M., Mori, K., and Eujita, Y. 1980. [Changes in ventricular dopamine and homovanillic acid concentrations in hydrocephalic patients.] (translated from Japanese). Neurol. Med. Chir. (Tokyo) 20:373-378.

    Google Scholar 

  31. Curran, T., and Lang, A. E. 1994. Parkinsonian syndromes associated with hydrocephalus: case reports, a review of the literature, and pathophysiological hypothesis. Movement Disorders 9:508-520.

    PubMed  Google Scholar 

  32. Suzuki, F., Handa, J., and Maeda, T. 1992. Effects of congenital hydrocephalus on serotonergic input and barrel cytoarchitecture in the developing somatosensory cortex of rats. Child's Nerv. Syst. 8:18-24.

    Google Scholar 

  33. Andersson, H., and Roos, B. E. 1969. 5-Hydroxyindoleacetic acid in cerebrospinal fluid of hydrocephalic children. Acta Paediatr. Scand. 58:601-608.

    PubMed  Google Scholar 

  34. Malm, J., Kristensen, B., Ekstedt, J., and Wester, P. 1994. CSF concentration gradients of monoamine metabolites in patients with hydrocephalus. J. Neurol. Neurosurg. Psychiatr. 57:1026-1033.

    PubMed  Google Scholar 

  35. Olmstead, C. E., Lazareff, J. A., Orlino, E. N., Fluharty, A. L., Faull, K. F., Peacock, W. J., Wehby-Grant, M. C., Gayek, R. J., and Fisher, R. S. 1995. Neuroamine related compounds in the CSF of hydrocephalic rabbits. Neuroreport 6:1769-1772.

    PubMed  Google Scholar 

  36. Mefford, I. N. 1988. Epinephrine in mammalian brain. Prog. Neuro-psychopharmacol. Biol. Psychiatr. 12:365-388.

    Google Scholar 

  37. Roth, K. A., Mefford, I. M., and Barchas, J. D. 1982. Epinephrine, norepinephrine, dopamine and serotonin: differential effects of acute and chronic stress on regional brain amines. Brain Res. 239:417-424.

    PubMed  Google Scholar 

  38. Bach-y-Rita, P. 1993. Neurotransmission in the brain by diffusion through the extracellular fluid: a review. NeuroReport 4:343-350.

    PubMed  Google Scholar 

  39. Cohen, Z., Bonvento, G., Lavcombe, P., and Hamel, E. 1996. Serotonin in the regulation of brain microcirculation. Prog. Neurobiol. 50:335-362.

    PubMed  Google Scholar 

  40. Larsson, A., Bergh, A. C., Bilting, M., Arlig, A., Jacobsson, L., Stephensen, H., and Wikkelso, C. 1994. Regional cerebral blood flow in normal pressure hydrocephalus diagnostic and prognostic aspects. Eur. J. Nuclear Med. 21:118-123.

    Google Scholar 

  41. Lindqvist, G., Andersson, H., Biliting, M., Blomstrand, C., Malmgren, H., and Wikkelso, C. 1993. Normal pressure hydrocephalus: psychiatric findings before and after shunt operation classified in a new diagnostic system for organic psychiatry. Acta Psychiatr. Scand. 88 Suppl. 373:18-32.

    Google Scholar 

  42. McLone, D. G., Bondareff, W., and Raimondi, A. J. 1971. Brain edema in the hydrocephalic hy-3 mouse: submicroscopic morphology. J. Neuropathol. Exp. Neurol. 30:627-637.

    PubMed  Google Scholar 

  43. Nicholson, C. 1989. Issues involved in the transmission of chemical signals through the brain extracellular space. Acta Morphol. Neerl. Scand. 26:69-80.

    Google Scholar 

  44. Girgis, M., and Wang, S.-C. 1981. A New Stereotaxic Atlas of the Rabbit Brain., Warren H. Green, Inc., St. Louis, MO 70.

    Google Scholar 

  45. Rose, M. 1931. Cytoarchitektonischer Atlas der Grosshirnrinde des Kaninchens. J. Psycholog. Neurolog. 43:353-440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Bigio, M.R., Bruni, J.E. & Vriend, J.P. Monoamine Neurotransmitters and Their Metabolites in the Mature Rabbit Brain Following Induction of Hydrocephalus. Neurochem Res 23, 1379–1386 (1998). https://doi.org/10.1023/A:1020798622692

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020798622692

Navigation