Skip to main content
Log in

Plasma Sterilization: A Review of Parameters, Mechanisms, and Limitations

  • Published:
Plasmas and Polymers

Abstract

Low-temperature plasma is a promising method for destroying microorganisms, an alternative to “conventional” methods which have numerous drawbacks. Several plasma-based sterilization technologies are presently under development, but their mechanisms of action are still incompletely understood. Since more than five years, we have investigated the effects of plasma on microorganisms (killing efficacy, and related mechanisms), as well as on the materials being sterilized. This article reports some important observations made during this work, using the commercialized so-called “plasma sterilizers” and “real” low-pressure plasma systems. The mechanism of etching (volatilization) of microorganisms by plasma that we have observed, leads us to believe that plasma may constitute a powerful solution to the clinical problems of deactivating also prions and endotoxins. However, plasma effectiveness is influenced by numerous experimental parameters, which we review here. This inherent complexity, and the weak penetrating power of plasma species, that severely limits plasma effectiveness in the presence of organic residues, packaging material, or complex geometries, are the main limitations of plasma sterilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Lerouge, Ph.D. thesis, Ecole Polytechnique, Montreal (May 2000).

  2. S. Lerouge, M. Tabrizian, M. R. Wertheimer, R. Marchand, and L'H. Yahia, Biomed. Maters. Eng. Int. J. (2001).

  3. S. Lerouge, C. Guignot, N. Yagoubi, M. Tabrizian, D. Ferrier, and L'H. Yahia, J. Biomed. Mater. Res. 52, 744 (2000).

    Google Scholar 

  4. S. Lerouge, M. R. Wertheimer, R. Marchand, M. Tabrizian, and L'H. Yahia, J. Biomed. Mater. Res. 51, 128 (2000).

    Google Scholar 

  5. S. Lerouge, A. C. Fozza, M. R. Wertheimer, R. Marchand, and L'H. Yahia, Plasms. Polyms. 5, 31 (2000).

    Google Scholar 

  6. P. Jacobs and R. Kowatsch, Endoscopic Surg. Allied Technol. 1, 57 (1993).

    Google Scholar 

  7. R. A. Caputo, Int. J. Processing Sterile Supply, Official Publication of the ESH, No. 4, July/August (1994).

  8. M. G. C. Baldry, J. Appl. Bacteriol. 54, 417 (1983).

    Google Scholar 

  9. M. C. Krebs, P. B´ ecasse, D. Verjat, and J. C. Darbord. Int. J. Pharmaceutics 160, 75 (1998).

    Google Scholar 

  10. R. S. Thomas, J. Cell. Biol. 23, 113 (1964).

    Google Scholar 

  11. D. Warth, Molecular structure of the bacterial spore, in Advances in Microbiology and Physiology, Vol. 17, D. W. Goulds, ed., (1978), p. 1.

  12. K. Kelly-Wintenberg, T. C. Montie, C. Brickman, J. R. Roth, A. K. Carr, K. Sorge, L. C. Wadsworth, and P. P. Y. Tsai, J. Indust. Microbiol. Biotechnol. 20, 69 (1998).

    Google Scholar 

  13. M. Moisan, J. Barbeau, and J. Pelletier, Le Vide (Science, Technique Applications) 299, 15 (2001).

    Google Scholar 

  14. A. C. Fozza, J. E. Klemberg-Sapieha, and M. R. Wertheimer, Plasms. Polyms. 4, 183 (1999).

    Google Scholar 

  15. E. Kay, in Plasma Chemistry III, Topics in Current Chemistry, Vol. 94, Springer Verlag, Berlin (1980), p.6.

    Google Scholar 

  16. B. R. M. G. Boucher, Med. Device and Diagn. Ind. 7, 51 (1985).

    Google Scholar 

  17. F. D. Egitto, V. Vukanovic, and G. N. Taylor, Plasma etching of organic polymers, in Plasma Deposition, Treatments, and Etching of Polymers, d'Agostino R, ed., Academic Press, Boston, (1990), p. 321.

  18. A. M. Wrobel, B. Lamontagne, and M.R. Wertheimer, Plasma Chem. Plasma Process. 8, 315 (1988).

    Google Scholar 

  19. S. R. Cain, F. D. Egitto, and F. Emmi, J. Vac. Sci. Technol. A 5, 1579 (1981).

    Google Scholar 

  20. S. Moreau, M. Moisan, M. Tabrizian, J. Barbeau, J. Pelletier, A. Ricard, and L'H. Yahia, J. Appl. Phys. 88, 1166 (2000).

    Google Scholar 

  21. S. M. Lin, Interaction of bacterial spores with radicals generated by microwave and low-temperature radio-frequency discharges, Ph.D. thesis, University of Texas at Arlington (1986).

  22. S. Hury, D. R. Vidal, F. Desor, J. Pelletier, and T. Lagarde, Letters Appl. Microbiol. 26, 241 (1998).

    Google Scholar 

  23. T. T. Chau, K. C. Kao, G. Blank, and F. Madrid, Biomaterials 17, 1273 (1996).

    Google Scholar 

  24. A. V. Khomich, I. A. Soloshenko, V. V. Tsiolko, and I. L. Mikhno, Proc. 12th Int'l. Conf. Gas Discharges and Their Applications, Greifswald, 2, 740 (1997).188 Lerouge, Wertheimer, and Yahia

    Google Scholar 

  25. A. V. Khomich, I. A. Soloshenko, V. V. Tsiolko, and I. L. Mikhno, Proc. Int. Cont. Plasma Phys., Prague, 2745 (1998).

  26. B. Lamontagne, O. M. K¨ uttel, and M. R. Wertheimer, Can. J. Phys. 69, 202 (1991).

    Google Scholar 

  27. M. R. Wertheimer and L. Martinu, in Microwave Discharges: Fundamentals and Applications, C. M. Ferreira and M. Moisan, eds., NATO ASI series 13: Physics, Plenum Press, New York, 302, 465 (1993).

    Google Scholar 

  28. A. C. Fozza, M. Moison, and M. R. Wertheimer, J. Appl. Phys. 88, 20 (2000).

    Google Scholar 

  29. A. Hallil, O. Zabeida, M. R. Wertheimer, and L. Martinu, J. Vac. Sci. Technol. A 18, 882 (2000).

    Google Scholar 

  30. M. Moisan and M. R. Wertheimer, Surf. Coat. Technol. 59, 1 (1993).

    Google Scholar 

  31. A. D. Russel, in Sterilization Technology: A Practical Guide for Manufacturers and Users of Health Care Products, R. F. Morissey and G. B. Phillips, eds., Van Nostrand Reinhold, New York, 3 (1993).

    Google Scholar 

  32. K. Kelly-Wintenberg, A. Hodge, and T. C. Montie, J. Vac. Sci. Technol. A 17, 1539 (1999).

    Google Scholar 

  33. C. Chang, S. F. Ossof, D. C. Lobe, M. H. Dorman, C. M. Dumais, R. G. Qualls, and J. D. Johnson, Appl. Environ. Microbiol. 49, 1361 (1985).

    Google Scholar 

  34. G. J. Tortora, B. R. Funke, and C. L. Case, Microbiology: An Introduction, Fifth Edition, The Benjamin Cummings Publishing Co., New York (1994).

    Google Scholar 

  35. M. J. Alfa, P. DeGagne, and N. Olson, Infect. Control Hosp. Epidemiol. 18, 641 (1997).

    Google Scholar 

  36. A. H. Dadd, K. E. McCormick, and G. M. Daley, J. Appl. Bacteriol. 55, 39 (1983).

    Google Scholar 

  37. H. Shintani, Biomed. Instrum. Technol.30, 449 (1996).

    Google Scholar 

  38. J. C. Darbord, Biomed. Pharmacother. 53, 34 (1999).

    Google Scholar 

  39. V. M. Steelman, A.O.R.N. J. 69, 946 (1999).

    Google Scholar 

  40. S. T. Cookson, J. J. Nora, J. A. Kithas, M. J. Arduino, W. W. Bond, P. H. Miller, J. Monahan, R.E. Hoffman, T. Curiel, D. Kaufman, B. M. Groves, and W. R. Jarvis, Catheter. Cardiovasc. Diagn. 42, 12 (1997).

    Google Scholar 

  41. N. Munakata, M. Saito, and K. Hieda, Photochem. Photobiol. 54, 761 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Wertheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerouge, S., Wertheimer, M.R. & Yahia, L. Plasma Sterilization: A Review of Parameters, Mechanisms, and Limitations. Plasmas and Polymers 6, 175–188 (2001). https://doi.org/10.1023/A:1013196629791

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013196629791

Navigation