Skip to main content
Log in

Attenuated Lapinized Chinese Strain of Classical Swine Fever Virus: Complete Nucleotide Sequence and Character of 3′-Noncoding Region

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The complete nucleotide sequence including precise 5′- and 3′-terminal non-coding regions (NCRs) of the attenuated lapinized Chinese strain (HCLV) of Classical Swine Fever Virus (CSFV) was determined from overlapping cDNA clones constructed by separated RT-PCR and rapid amplification of cDNA ends (RACE) methods. The genomic RNA of the HCLV strain consists of 12,310 nucleotides (nts) including 374 nts and 242 nts in the 5′- and 3′-NCRs, respectively. It contains one large open reading frame (ORF) encoding a polyprotein of 3,898 amino acids with a calculated molecular weight of 437.6 kDa. There is one notable insertion of 12 continuous nts, CTTTTTTCTTTT in the 3′-NCR of HCLV genomic cDNA when compared with its parental virulent Shimen strain. Sequence alignment of partial 3′-NCR reveals two groups of CSFV vaccine strains carrying similar T-rich insertions at different positions in this region. Computer-predicted secondary structures suggest that T-rich insertion greatly change the structures and thus decrease the promoter functions of 3′-NCRs during the replications of these two groups of CSFV vaccine strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Francki R.I.B., Fauquet C.M., Knudson D.L., and Brown F. (eds), Arch Virol Suppl 2, 223-233, 1991.

    Google Scholar 

  2. Frohman M.A., PCR Protocols: A Guide to Methods and Applications. Academic Press Inc, NY, 1990, pp. 28-37.

    Google Scholar 

  3. Ishikawa K., Nagai H., Katayama K., Tsutsui M., Tanabayashi K., and Takeuchi K., Arch Virol 140, 1385-1391, 1995.

    PubMed  Google Scholar 

  4. Meyers G., Rumenapf T., and Thiel H.J.,Virology 171, 555-567, 1989.

    Article  PubMed  Google Scholar 

  5. Meyers G. and Thiel H.J., Adv Virus Res 47, 53-118, 1995.

    Google Scholar 

  6. Moormann R.J.M., Warmerdam P.A.M., van der Meer B., Schaaper W.M.M., Wensvoort G., and Hulst M.M.,Virology 177, 184-198, 1990.

    Article  PubMed  Google Scholar 

  7. Moormann R.J.M., van Gennip H.G.P., Miedema G.K.W., Hulst M.M., and van Rijn P.A., J Virol 70, 763-770, 1996.

    PubMed  Google Scholar 

  8. Ruggli N., Tratschin J.D., Mittelholzer C., and Hofmann M.A., J Virol 70, 3478-3487, 1996.

    PubMed  Google Scholar 

  9. Rumenapf T., Unger G., Stauss J.H., and Thiel H.J., J Virol 67, 3288-3294, 1993.

    PubMed  Google Scholar 

  10. Terpstra C., Woortmeyer R., and Barteling S.J., Dtsch Tieraerztl Wochenschr 97, 77-79, 1990.

    Google Scholar 

  11. Wiskerchen M. and Collett M.S., Virology 184, 1-10, 1991.

    PubMed  Google Scholar 

  12. Xu J., Mendez E., Caron P.R., Lin C., Murcko M.A., and Collett M.S., J Virol 71, 5312-5322, 1997.

    PubMed  Google Scholar 

  13. Bjorklund H.V., Stadejek T., Vilcek S., and Belak S., Virus Genes 16(3), 307-312, 1998.

    PubMed  Google Scholar 

  14. Vilcek S. and Belak S., Virus Genes 15, 181-186, 1997.

    PubMed  Google Scholar 

  15. Huang Q.H., Zhang C.Y., Wang J.F., Fu L.Z., and Wang N., Chinese Science Bulletin 45: 4, 367-369, 2000.

    Google Scholar 

  16. Wang Z., Lu Y., and Ding M.X., Virologica Sinica 15(2), 170-179, 2000.

    Google Scholar 

  17. Ying Z. and Liu J.H., Animal Virology. Chinese Science Press, 1982, pp. 652-660.

  18. Proutski V., Gritsun T.S., Gould E.A., and Holmes E.G., Virus Res 64, 107-123, 1999.

    PubMed  Google Scholar 

  19. Men R., Bray M., Clark D., Chanock R.M., and Lai C.J., J Virol 70, 3930-3937, 1996.

    PubMed  Google Scholar 

  20. Mandl C.W., Holzmann H., Meixner T., Rauscher S., Stadler P.F., and Allison S.L., J Virol 72, 2132-2140, 1998.

    PubMed  Google Scholar 

  21. Khromykh A.A. and Westaway E.G., J Virol 71, 1497-1505, 1997.

    PubMed  Google Scholar 

  22. Abubakar S., Chee H.Y., Al-kobaisi M.F., Jiang X.S., Chua K.B., and Lam S.K., Virus Res 61, 1-9, 1999.

    PubMed  Google Scholar 

  23. GritsunT. S., Venugopal K., de A. Zanottom P.M., Mikhailov M.V., Sall A.A., and Holmes B.C., Virus Res 49, 27-39, 1997.

    PubMed  Google Scholar 

  24. Sandvik T., Rimstad E., and Mjaaland S., Arch Virol 145, 1659-1669, 2000.

    PubMed  Google Scholar 

  25. Foder E., Pritlove D.C., and Brownlee G.G., J Virol 68, 4092-4096, 1994.

    PubMed  Google Scholar 

  26. Grebennikova T.V., Zaberezhnyi A.D., Sergeev V.A., Biketov S.F., Aliper T.I., and Nepoklonov Y.A., Molekulyarnaya-Genetika-Mikrobiologiya-i-Virusologiya 0(2), 34-40, 1999.

    Google Scholar 

  27. Wang Z.S., Qiu H.S., and Lang H.W., Proc of China Inst Vet Drug Ctrl 14, 2-5, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H.X., Wang, J.F., Zhang, C.Y. et al. Attenuated Lapinized Chinese Strain of Classical Swine Fever Virus: Complete Nucleotide Sequence and Character of 3′-Noncoding Region. Virus Genes 23, 69–76 (2001). https://doi.org/10.1023/A:1011187413930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011187413930

Navigation