Skip to main content
Log in

Benzafibrate induces acyl-CoA oxidase mRNA levels and fatty acid peroxisomal β-oxidation in rat white adipose tissue

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Rats treated with bezafibrate, a PPAR activator, gain less body weight and increase daily food intake. Previously, we have related these changes to a shift of thermogenesis from brown adipose tissue to white adipose tissue attributable to bezafibrate, which induces uncoupling proteins (UCP), UCP-1 and UCP-3, in rat white adipocytes. Nevertheless, UCP induction was weak, implying additional mechanisms in the change of energy homeostasis produced by bezafibrate. Here we show that bezafibrate, in addition to inducing UCPs, modifies energy homeostasis by directly inducing aco gene expression and peroxisomal fatty acid β-oxidation in white adipose tissue. Further, bezafibrate significantly reduced plasma triglyceride and leptin concentrations, without modifying the levels of PPARγ or ob gene in white adipose tissue. These results indicate that bezafibrate reduces the amount of fatty acids available for triglyceride synthesis in white adipose tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klosiewicz-Latoszek L, Kozuka H: Comparative studies on the influence of different fibrates on serum lipoproteins in endogenous hyperlipoproteinemia. Eur J Clin Pharmacol 40: 33–41, 1991

    Article  PubMed  Google Scholar 

  2. Isseman Y, Green S: Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347: 645–650, 1990

    PubMed  Google Scholar 

  3. Wahli W, Braissant O, Desvergne B: Peroxisome proliferator activated receptors: Transcriptional regulators of adipogenesis, lipid metabolism and more. Chem Biol 2: 261–266, 1995

    Article  PubMed  Google Scholar 

  4. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W: Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103: 1489–1498, 1999

    PubMed  Google Scholar 

  5. Djouadi F, Weinheimer CJ, Saffitz JE, Pitchford C, Bastin J, Gonzalez FJ, Kelly DP: A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator-activated receptor a-deficient mice. J Clin Invest 102: 1083–1091, 1998

    PubMed  Google Scholar 

  6. Costet P, Legendre C, Moré J, Edgar A, Galtier P, Pineau T: Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 273: 29577–29585, 1998

    Article  PubMed  Google Scholar 

  7. Poynter ME, Daynes RA: Peroxisome proliferator-activated receptor alpha activation modulates cellular redox status, represses nuclear factor-kappaB signaling, and reduces inflammatory cytokine production in aging. J Biol Chem 273: 32833–32841, 1998

    PubMed  Google Scholar 

  8. Alegret M, Ferrando R, Vázquez M, Adzet T, Merlos M, Laguna JC: Relationship between plasma lipids and palmitoyl-CoA hydrolase and synthetase activities with peroxisomal proliferation in rats treated with fibrates. Br J Pharmacol 112: 551–556, 1994

    PubMed  Google Scholar 

  9. Alegret M, Cerqueda E, Ferrando R, Vázquez M, Sánchez RM, Adzet T, Merlos M, Laguna JC: Selective modification of rat hepatic microsomal fatty acid chain elongation and desaturation by fibrates. Relationship with their activity as peroxisome proliferators. Br J Pharmacol 114: 1351–1358, 1995

    PubMed  Google Scholar 

  10. Vázquez M, Muñoz S, Alegret M, Adzet T, Merlos M, Laguna JC: Differential effects of fibrates on the acyl composition of microsomal phospholipids in rats. Br J Pharmacol 116: 2067–2075, 1995

    PubMed  Google Scholar 

  11. Vázquez M, Merlos M, Adzet T, Laguna JC: Decreased susceptibility to copper-induced oxidation of rat-lipoproteins after fibrate treatment: Influence of fatty acid composition. Br J Pharmacol. 117: 1155–1162, 1996

    PubMed  Google Scholar 

  12. Cabrero A, Llaverias G, Roglans N, Alegret M, Sánchez R, Adzet T, Laguna JC, Vázquez M: Uncoupling protein-3 mRNA levels are increased in white adipose tissue and skeletal muscle of bezafibratetreated rats. Biochem Biophys Res Commun 260: 547–556, 1999

    PubMed  Google Scholar 

  13. Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W: Control of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPARs). Cell 68: 879–887, 1992

    PubMed  Google Scholar 

  14. Lemberger T, Saladin R, Vázquez M, Assimacopoulos F, Staels B, Desvergne B, Wahli W, Auwerx J: Expression of the peroxisome proliferator-activated receptor a gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 269: 1764–1769, 1996

    Google Scholar 

  15. Montgomery MR, Cinti DL: Pyridine nucleotide-dependent electron transport in kidney cortex microsomes: Interaction between desaturase and other mixed function oxidases. Mol Pharmacol 13: 60–69, 1977

    PubMed  Google Scholar 

  16. Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Article  PubMed  Google Scholar 

  17. Rodbell M: Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239: 375–380, 1963

    Google Scholar 

  18. Cayen MN: Disposition, metabolism and pharmacokinetics of antihyperlipidemic agents in laboratory animals and man. Pharmacol Ther 29: 157–204, 1985

    PubMed  Google Scholar 

  19. Lazarow PB: Assay of peroxisomal β-oxidation of fatty acids. Meth Enzymol 72: 315–319, 1981

    PubMed  Google Scholar 

  20. Peters JM, Hennuyer N, Staels B, Fruchart JC, Fievet C, Gonzalez FJ, Auwerx J: Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. J Biol Chem 272: 27307–27312, 1997

    PubMed  Google Scholar 

  21. Lock EA, Mitchell AM, Elcombe CR: Biochemical mechanisms of induction of hepatic peroxisome proliferation. Annu Rev Pharmacol Toxicol 29: 145–163, 1989

    PubMed  Google Scholar 

  22. Schoonjans K, Staels B, Auwerx J: The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochim Biophys Acta 1302: 93–109, 1996

    PubMed  Google Scholar 

  23. Inoue I, Noji S, Man-zhen S, Takahashi K, Katayama S: The peroxisome proliferator-activated receptor α (PPARα) regulates the plasma thiobarbituric acid-reactive substance (TBARS) level. Biochem Biophys Res Commun 237: 606–610, 1997

    PubMed  Google Scholar 

  24. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM: Weight reducing effects of the plasma protein encoded by the obese gene. Science 269: 543–546, 1995

    PubMed  Google Scholar 

  25. Saladin R, De Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B, Auwerx J: Transient increase in obese gene expression after food intake or insulin administration. Nature 377: 527–529, 1995

    PubMed  Google Scholar 

  26. Villarroya F, Giralt M, Iglesias R: Retinoids and adipose tissues: Metabolism, cell differentiation and gene expression. Int J Obes 23: 1–6, 1999

    Google Scholar 

  27. Tontonoz P, Hu E, Spiegelman BM: Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79: 1147–1156, 1994

    PubMed  Google Scholar 

  28. Caro JF, Sinha MK, Kolaczynski JW, Zhang PL, Considine RV: Leptin: The tale of an obesity gene. Diabetes 45: 1455–1462, 1996

    PubMed  Google Scholar 

  29. Ogawa S, Takeuchi K, Sugimura K, Fukuda M, Lee R, Ito S, Sato T: Bezafibrate reduces blood glucose in type 2 diabetes mellitus. Metabol Clin Exp 49: 331–334, 2000

    Google Scholar 

  30. Braissant O, Foufelle F, Scotto C, Dauça M, Wahli W: Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-α,-β and-γ in the adult rat. Endocrinology 137: 354–366, 1996

    PubMed  Google Scholar 

  31. Staels B, van Tol A, Andreu T, Auwerx J: Fibrates influence the expression of genes involved in lipoprotein metabolism in a tissue-selective manner in the rat. Arterioscler Thromb 12: 286–294, 1996

    Google Scholar 

  32. Baillie RA, Takada R, Nakamura M, Clarke SD: Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fish oil: a mechanism for decreased body fat deposition. Prost Leuk Essen Fatty Acids 60: 351–356, 1999

    Google Scholar 

  33. Schoonjans K, Peinado-Onsurbe J, Lefebvre A-M, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J: PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 19: 5336–5348, 1996

    Google Scholar 

  34. De Vos P, Lefebvre A-M, Miller SG, Guerre-Millo M, Wong K, Saladin R, Hamann LG, Staels B, Briggs MR, Auwerx J: Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor γ. J Clin Invest 4: 1004–1009, 1996

    Google Scholar 

  35. Brandt JM, Djouadi F, Kelly DP: Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome poliferator-activated receptor γ. J Biol Chem 273: 23786–23792, 1998

    PubMed  Google Scholar 

  36. Brown PJ, Winegar DA, Plunket KD, Moore LB, Lewis MC, Wilson JG, Sundseth SS, Koble CS, Wu Z, Chapman JM, Lehmann JM, Kliewer SA, Willson TM: A ureido-thioisobutiric acid (GW9578) is a subtypeselective PPARa agonist with potent lipid-lowering activity. J Med Chem 42: 3785–3788, 1999

    PubMed  Google Scholar 

  37. Basu-Modak S, Braissant O, Escher P, Desvergne B, Honegger P, Wahli W: Peroxisome proliferator-activated receptor β regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J. Biol. Chem. 274: 35881–35888, 1999

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Laguna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vásquez, M., Roglans, N., Cabrero, Á. et al. Benzafibrate induces acyl-CoA oxidase mRNA levels and fatty acid peroxisomal β-oxidation in rat white adipose tissue. Mol Cell Biochem 216, 71–78 (2001). https://doi.org/10.1023/A:1011060615234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011060615234

Navigation