Skip to main content
Log in

Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous hydroxyapatite (HA) scaffoldings are currently used in tissue engineering for bone reconstruction. When this osteoconductive biomaterial is combined with osteoprogenitor cells, it acquires osteoinductive features which accelerate and improve bone formation in vivo. The aim of our study was to assess the mechanical properties of HA–bone complexes undergoing indentation tests, and relate stiffness to composition and structure as examined by micro X-ray. To this purpose, 35-mm tibia diaphyseal resections were performed in sheep. Gaps were filled using porous HA cylinders. Implants were loaded with autologous bone marrow stromal cells (BMSC); cell-free cylinders were used as control. After 8 weeks, bone tissue was found within the internal macropores of cell-loaded HA carriers, and in control implants, bone formation was mostly limited to the outer surface. As assessed by indentation testing the stiffness values of bone–HA composites were halfway between those of HA scaffoldings and tibia bone. Cell-loaded implants were stiffer than cell-free ones. In a cell-loaded implant we also analyzed the variation of stiffness along the main axis of the tibia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Marcacci, E. Kon, S. Zaffagnini, R. Glardino, M. Rocca, A. Corsi, A. Benvenuti, P. Blanco, R. Quarto, L. Martin and R. Cancedda, Calcif. Tissue Int. 64 (1999) 83.

    Article  Google Scholar 

  2. A. Boyde, A. Corsi, R. Quarto, R. Cancedda and P. Blanco, Bone 24 (1999) 579.

    Article  Google Scholar 

  3. R. E. Grundel, M. W. Chapman, T. Yee and D. C. Moore, Clin Orthop. Rel. Res. 26 (1991) 244.

    Google Scholar 

  4. H. Lang and T. Mertens, Dtsch. Z. Mund. Kiefer Gesichtschir. 15 (1991) 64.

    Google Scholar 

  5. C. T. Begley, M. J. Doherty, D. P. Hankey and D. J. Wilson, Bone 14 (1993) 661.

    Article  Google Scholar 

  6. S. P. Bruder, D. J. Fink and A. I. Caplan, J. Cell. Biochem. 56 (1994) 283.

    Google Scholar 

  7. S. P. Bruder, A. A. Kurth, M. Shea, W. C. Hayes and S. Kadiyala, Trans. Orthop. Res. Soc. 22 (1997) 250.

    Google Scholar 

  8. E. Kon, A. Muraglia, A. Corsi, M. Marcacci, I. Martin, A. Boyde, I. Ruspantini, P. Chistolini, M. Rocca, R. Glardino, R. Cancedda and R. Quarto, J. Biomed. Mater. Res. in press.

  9. C. A. Van Blitterswijk, J. J. Grote, W. Kulipers, W. T. Daems and K. De Groot, Biomaterials 7 (1986) 137.

    Article  Google Scholar 

  10. O. Gauthier, J. M. Bouler, E. Aguado, P. Pilet and G. Daculsi, ibid. 19 (1998) 133.

    Article  Google Scholar 

  11. J. C. Le Huec, T. Schaeverbeke, D. Clement, J. Faber and A. Le Rebeller, ibid. 16 (1995) 113.

    Article  Google Scholar 

  12. M. Trecant, J. Delecrin, J. Royer, E. Goyenvalle and G. Daculsi, Clin. Mater. 15 (1994) 233.

    Google Scholar 

  13. R. B. Martin, M. W. Chapman, R. E. Holmes, D. J. Sartoris, E. C. Shors, J. E. Gordon, D. O. Heitter, N. A. Sharkey and A. G. Zissimos, Biomaterials 10 (1989) 491.

    Article  Google Scholar 

  14. T. J. Gao, T. S. Lindholm, B. Kommonen, P. Ragni, A. Paronzini, T. C. Lindholm, T. JÄmsÄ and P. Jalovaara, J. Biomed. Mater. Res. 32 (1996) 505.

    Article  Google Scholar 

  15. J. Vuola, R. Taurio, H. GÖransson and S. Askoseljavaara, Biomaterials 19 (1998) 223.

    Article  Google Scholar 

  16. M. Sous, R. Bareille, F. Rouais, D. Clement, J. Amedee, B. Dupuy and C. Baquey, ibid. 19 (1998) 2147.

    Article  Google Scholar 

  17. D. R. Sumner, T. L. Willke, A. Berzins and T. M. Turner, J. Biomech. 27 (1994) 1095.

    Article  Google Scholar 

  18. Q. Kang, Y. H. An and R. J. Friedman, Amer. J. Vet. Res. 58 (1997) 1171.

    Google Scholar 

  19. J. Houde, M. Marchetti, J. Duquette, A. Hoffman, G. Steinberg, G. K. Crane and D. Baran, Calcif. Tissue Int. 57 (1995) 201.

    Article  Google Scholar 

  20. I. Martin, A. Muraglia, G. Campanile, R. Cancedda and R. Quarto, Endocrinology 138 (1997) 4456.

    Article  Google Scholar 

  21. S. P. Timoshenko and J. N. Goodier, in “Theory of elasticity”, 3rd edn (McGraw-Hill, New York, 1970) 380.

    Google Scholar 

  22. I. M. Bouler, M. Trecant, J. Delecrin, J. Royer, N. Passuti and G. Daculsi, J. Biomed. Mater. Res. 32 (1996) 603.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chistolini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chistolini, P., Ruspantini, I., Bianco, P. et al. Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defects. Journal of Materials Science: Materials in Medicine 10, 739–742 (1999). https://doi.org/10.1023/A:1008939524807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008939524807

Keywords

Navigation