Skip to main content
Log in

Differential patterns of expression of glycosylphosphatidylinositol-anchored carcinoembryonic antigen and alkaline phosphatase in various cancer cell lines

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The expression of glycosylphosphatidylinositol (GPI-anchored) carcinoembryonic antigen (CEA) and alkaline phosphatase (ALP) on the cell surface of various cancer cell lines and a lung diploid cell line (WI38) was investigated, with exposure of the cell lines to a cell differentiation agent (sodium butyrate) to induce cell differentiation and expression of the two tumor-associated antigens. In three colon (SW1222, SW1116, and HT-29) and stomach (MKN-45) cancer cell lines, all of which are double producers of CEA and ALP, the maximum expression of GPI-anchored CEA occurred with butyrate at a lower concentration than did that of GPI-anchored ALP. GPI-anchored ALP derived from colon (SW1222 and SW1116) and stomach (MKN-45 and MKN-1) cancer cell lines was heat-stable with and without exposure to butyrate, but GPI-anchored ALP derived from lung cancer cell lines (PC-6, PC13, PC-14, WI26VA4, and WI38VA13) showed a variety of heat stabilities, depending on cell line, butyrate exposure, and SV40 transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M and Kufe DW (1984) Effect of sodium butyrate on human breast carcinoma (MCF-7) cellular proliferation, morphology, and CEA production. Breast Cancer Res Treat 4: 269-274.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama S, Amo H, Watanabe T, Matuyama M, Sakamoto J, Imaizumi H, Kondo T and Takagi H (1988) Characteristics of three human gastric cancer cell lines, NU-GC-2, NU-GC-3 and NU-GC-4. Jpn J Surg 18: 438-446.

    Article  PubMed  CAS  Google Scholar 

  • Chung YS, Song IS, Erickson RH, Sleisenger MH and Kim YS (1985) Effect of growth and sodium butyrate on brush border membrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res 45: 2976-2982.

    PubMed  CAS  Google Scholar 

  • Ferguson MAJ and Williams AF (1988) Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu Rev Biochem 57: 285-320.

    Article  PubMed  CAS  Google Scholar 

  • Fishman WH (1983) Oncodevelopmental markers. In: Oncodevelopmental markers; Biologic, Diagnostic, and Monitoring Aspects. Academic Press, Inc., New York, pp. 3-19.

    Google Scholar 

  • Fishman WH, Inglis NR, Green S, Anstiss CL, Ghosh NK, Reif AE, Rustigan R, Krant MJ and Stolbach LL (1968) Immunology and biochemistry of Regan isoenzyme of alkaline phosphatase in human cancer. Nature (Lond.) 219: 697-699.

    Article  CAS  Google Scholar 

  • Fleming H, Begley M, Campi T, Condon R, Dobyns K, McDonagh J and Wallace S (1995) Induction of heat labile alkaline phosphatase by butyrate in differentiating endometrial cells. J Cell Biochem 58: 509-516.

    Article  PubMed  CAS  Google Scholar 

  • Gold P and Freedman SO (1965a) Demonstration of tumor-specific antigens in human colonic carcinoma by immunological tolerance and absorption techniques. J Exp Med 121: 439-462.

    Article  PubMed  CAS  Google Scholar 

  • Gold P and Freedman SO (1965b) Specific carcinoembryonicantigens of the human digestive system. J Exp Med 122: 467-481.

    Article  PubMed  CAS  Google Scholar 

  • Gum JR, Kam WK, Byrd JC, Hicks JW, Sleisenger MH and Kim YS (1987) Effects of sodium butyrate on human colonic adenocarcinoma cells. J Biol Chem 262: 1092-1097.

    PubMed  CAS  Google Scholar 

  • Hodin RA, Meng S, Archer S and Tang R (1996) Cellular growth state differentially regulates enterocyte gene expression in butyrate-treated HT-29 cells. Cell Growth Differ 7: 647-653.

    PubMed  CAS  Google Scholar 

  • Howard AD, Berger J, Gerber L, Familletti P and Udenfriend S (1987) Characterization of the phophatidylinositol-glycan membrane anchor of human alkaline phophatase. Proc Natl Acad Sci USA 84: 6055-6059.

    Article  PubMed  CAS  Google Scholar 

  • Knaup G, Pfleiderer G and Bayreuther K (1978) Human diploid lung fibroblast cell lines WI-26 and WI38 exhibit isozyme shift of alkaline phosphatase after viral transformation. Clin Chim Acta 88: 375-383.

    Article  PubMed  CAS  Google Scholar 

  • Kominami T, Miki A and Ikehara Y (1985) Electrophoretic characterization of hepatic alkaline phosphates released by phosphatidylinositol-specific phospholipase C. Biochem J 227: 183-189.

    PubMed  CAS  Google Scholar 

  • Leibovitz A, Stinson JC, McCombs WB III, McCoy CE, Mazur KC and Marby ND (1976) Classification of human colorectal adenocarcinoma cell lines. Cancer Res 36: 4562-4569.

    PubMed  CAS  Google Scholar 

  • Low MG (1989) The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta 988: 427-454.

    PubMed  CAS  Google Scholar 

  • Low MG and Saltiel AR (1988) Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science 239: 268-274.

    PubMed  CAS  Google Scholar 

  • Low MG and Zilversmit DB (1980) Role of phosphatidylinositol in attachment of alkaline phosphates to membranes. Biochemistry 19: 3913-3918.

    Article  PubMed  CAS  Google Scholar 

  • Malik AS and Low MG (1986) Conversion of human placental alkaline phophatase from a high Mr form to a low Mr form during butanol extraction. Biochem J 240: 519-527.

    PubMed  CAS  Google Scholar 

  • McComb RB, Bowers Jr GN and Posen S (1979) Alkaline phosphatase, Plenum Publishing Corp., New York.

    Google Scholar 

  • Miki A, Kominami T and Ikehara Y (1985) pH-dependent conversion of liver-membranous alkaline phosphatase to a serum-soluble from by n-butanol extraction. Biochem Biophys Res Commun 126: 89-95.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama T, Yoshida M and Kitamura M (1970) L-Leucine sensitive, heat-stable alkaline phosphates isoenzyme detected in a patient with pleuritis caricinomatosa. Clin Chim Acta 30: 546-548.

    Article  PubMed  CAS  Google Scholar 

  • Niles RM, Wilhelm SA, Thomas P and Zamcheck N (1988) The effect of sodium butyrate and retinoic acid on growth and CEA production in a series of human colorectal tumor cell lines representing different states of differentiation. Cancer Invest 6: 39-45.

    PubMed  CAS  Google Scholar 

  • Oikawa S, Nakazato H and Kosaki G (1987) Primary structure of human carcino-embryonic antigen (CEA) deduced from cDNA sequence. Biochem Biophys Res Commun 142: 511-518.

    Article  PubMed  CAS  Google Scholar 

  • Pignatelli M, Durbin H and Bodmer WF (1990) Carcinoembryonic antigen functions as an accessory adhesion molecule mediating colon epithelial cell-collagen interactions. Proc Natl Acad Sci USA 87: 1541-1545.

    Article  PubMed  CAS  Google Scholar 

  • Riggs MG, Whittaker RG, Neumann JR and Ingram VM (1977) n-butyrate causes histone modification in HeLa and Friend erythroleukemia cells. Nature 268: 462-464.

    Article  PubMed  CAS  Google Scholar 

  • Saini K, Steele G and Thomas P (1990) Induction of carcinoembryonic-antigen-gene expression in human colorectal carcinoma by sodium butyrate. Biochem J 272: 541-544.

    PubMed  CAS  Google Scholar 

  • Sealy L and Chalkley R (1978) The effect of sodium butyrate on histone modification. Cell 14: 115-121.

    Article  PubMed  CAS  Google Scholar 

  • Takami N, Misumi Y, Kuroki M, Matsuoka Y and Ikehara Y (1988) Evidence for carboxyl-terminal processing and glycolipid-anchoring of human carcinoembryonic antigen. J Biol Chem 263: 12716-12720.

    PubMed  CAS  Google Scholar 

  • Toribara NW, Sack TL, Gum JR, Ho SB, Shively JE, Willson JKV and Kim YS (1989) Heterogeneity in the induction and expression of carcinoembryonic antigen-related antigens in human colon cancer cell lines. Cancer Res 49: 3321-3327.

    PubMed  CAS  Google Scholar 

  • Tsao D, Shi Z, Wong A and Kim YS (1983) Effect of sodium butyrate on carcinoembryonic antigen production by human colonic adenocarcinoma cells in culture. Cancer Res 43: 1217-1222.

    PubMed  CAS  Google Scholar 

  • Velcich A, Palumbo L, Jarry A, Laboisse C, Racevskis J and Augenlicht L (1995) Patterns of expression of lineage-specific markers during in vitro induced differentiation of HT29 colon carcinoma cells. Cell Growth Differ 6: 749-757.

    PubMed  CAS  Google Scholar 

  • Vidali G, Boffa LC, Bradbury EM and Allfrey VB (1978) Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA. Proc Natl Acad Sci USA 75: 2239-2243.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Yoshinari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshinari, K., Matsumoto, K. & Misaki, H. Differential patterns of expression of glycosylphosphatidylinositol-anchored carcinoembryonic antigen and alkaline phosphatase in various cancer cell lines. Cytotechnology 31, 255–263 (1999). https://doi.org/10.1023/A:1008061424281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008061424281

Navigation