Skip to main content

Advertisement

Log in

Biovector™ Nanoparticles Improve Antinociceptive Efficacy of Nasal Morphine

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We have studied the antinociceptive activity and blood andbrain delivery of nasal morphine with or without Biovector™nanoparticles in mice.

Methods. A tail flick assay was used to evaluate theantinociceptive activity. The kinetics of morphine were evaluated in blood andbrain, using tritiated morphine as tracer.

Results. These nanoparticles were shown to increase the durationof the antinociceptive activity of morphine after nasal administration.This effect was not due to an increase of morphine in the blood; andthe analgesic activity of morphine in association with nanoparticleswas reversed by naloxone. The ED50 value was 33.6 ±15.6 mg/kg for morphine alone and 14.4 ± 7.6 mg/kg in presenceof nanoparticles. They were only effective at low doses (1.5 to 2.5 μg),a higher or a lower dose had no effect. No interaction was found betweennanoparticles and morphine. NaDOC, a permeation enhancer, was unable toimprove nasal morphine activity.

Conclusions. These results show the presence of nanoparticles onlyat a very specific dose increases the antinociceptive activity of nasalmorphine in mice. The occurrence of a direct transport of morphinefrom the nasal mucosa to the brain is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. N. Vachharajani, W. C. Shyu, D. Greene, and R. Barbhaiya. The pharmacokinetics of butorphanol and its metabolites at steady state following nasal administration in humans. Biopharm. Drug Dispos. 18:191–202 (1997).

    Google Scholar 

  2. A. Takala, V. Kaasalainen, T. Seppälä, E. Kalso, and K. T. Olkkola. Pharmacokinetic comparison of intravenous and intranasal administration of oxycodone. Acta. Anaesthesiol. Scand. 41:309–312 (1997).

    Google Scholar 

  3. R. T. Jackson, J. Tigges, and W. Arnold. SubarachnoÏ d space of the CNS, nasal mucosa and lymphatic system. Arch. Otolaryngol. 105:180–184 (1979).

    Google Scholar 

  4. K. Kristensson and Y. Olsson. Uptake of exogenous proteins in mouse olfactory cells. Acta. Neuropath. 19:145–154 (1971).

    Google Scholar 

  5. R. Thorne, C. Emory, T. Ala, and W. Frey. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 692:278–282 (1995).

    Google Scholar 

  6. Y. Wang, R. Aun, and F. Tse. Brain uptake of dihydroergotamine after intravenous and nasal administration in the rat. Biopharm. Drug Dispos. 19:571–575 (1998).

    Google Scholar 

  7. S. W. Barthold. Olfactory neural pathway in mouse hepatitis virus nasoencephalitis. Acta. Neuropathol. 76:502–506 (1988).

    Google Scholar 

  8. H. Tjalve, J. Henriksson, J. Tallvist, B. Larsson, and N. Lindquist. Uptake of manganese and cadmium from the nasal mucosa into the central nervous system via olfactory pathways in rats. Pharmacol. Toxicol. 79:347–356 (1996).

    Google Scholar 

  9. J. Henriksson and H. Tjalve. Uptake of inorganic mercury in the olfactory bulbs via olfactory pathways in rats. Environ. Res. 77:130–140 (1998).

    Google Scholar 

  10. T. Sakane, M. Akizuki, S. Yamashita, T. Nadai, M. Hashida, and H. Sezaki. The transport of a drug to the cerebrospinal fluid directly from the nasal cavity: the relation to the lipophilicity of the drug. Chem. Pharm. Bull. 39:2456–58 (1991).

    Google Scholar 

  11. S. Mathison, R. Nagilla, and U. Kompella. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J. Drug Target. 5:415–441 (1998).

    Google Scholar 

  12. R. D. Ennis, L. Borden, and W. A. Lee. The effects of permeation enhancers on the surface morphology of the rat nasal mucosa: a scanning electron microscopy study. Pharm. Res. 7:468–475 (1990).

    Google Scholar 

  13. D. Betbeder, C. Davrinche, JL. Davignon, and E. Prieur. Int. Patent WO 92/21329 (1996).

    Google Scholar 

  14. E. Prieur, D. Betbeder, F. Niedergang, M. Major, A. Alcover, J.L. Davignon, and C. Davrinche. Combination of human cytomegalovirus recombinant immediate-early protein (IE1) with 80nm cationic Biovectors: protection from proteolysis and potentiation of presentation to CD4+ T-cell clones in vitro. Vaccine 14:511–520 (1996).

    Google Scholar 

  15. M. Major, E. Prieur, J. F. Tocanne, D. Betbeder, and A. M. Sautereau. Characterization and phase behaviour of phospholipid bilayers adsorbed on spherical polysaccharidic nanoparticles. Biochim. Biophys. Acta. 1327:32–40 (1997).

    Google Scholar 

  16. W. H. Oldendorf, S. Hyman, L. Braun, and S. Z. Oldendorf. Blood-brain barrier: penetration of morphine, codeine, heroine, and methadone after carotid injection. Science 178:984–86 (1972).

    Google Scholar 

  17. M. C. Woodle, and D. Papahadjopoulos. Liposome preparation and size characterization. Methods enzymol. 171:193–217 (1989).

    Google Scholar 

  18. G. R. J. Bartlett. Phosphorus assay in column chromatography J. Biol. Chem. 234:466–468 (1959).

    Google Scholar 

  19. F. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356 (1956).

    Google Scholar 

  20. F. E. D'Amour and D. L. Smith. A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 72:74–79 (1941).

    Google Scholar 

  21. K. Ikeda, K. Murata, M. Koboyashi, and K. Noda. Enhancement of bioavailability of dopamine via nasal route in beagle dogs. Chem. Pharm. Bull. (Tokyo) 40:2155–58 (1992).

    Google Scholar 

  22. M. Barjavel, P. Sandouk, M. Plotkine, and J. M. Scherrman. Morphine and morphine metabolite kinetics in the rat brain as assessed by transcortical microdialysis. Life Sci. 55:1301–08 (1994).

    Google Scholar 

  23. T. C. A Kumar, G. F. X. David, A. Sankaranarayanan, V. Puri, and K. R. Sundran. Pharmacokinetics of progesterone after its administration to ovariectomized rhesus monkeys by injection, infusion or nasal administration. Proc. Natl. Acad. Sci. USA. 79:4185–89 (1982).

    Google Scholar 

  24. W. M. Pardridge, R. T. Borchardt, A. J. Bupta, and V. J. Stella. Strategies for drug delivery through the blood brain barrier. In Directed drug delivery. Human Press, Clilton, 1985.

    Google Scholar 

  25. S. I. Rapoport. Blood brain barrier in physiology and medicine, Raven press, New York, 1979.

    Google Scholar 

  26. T. Sakane, M. Akizuki, M. Yoshida, S. Yamashita, T. Nadai, M. Hashida, and H. Sezaki. Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J. Pharm. Pharmacol. 43:449–451 (1991).

    Google Scholar 

  27. S. Gizurarson. The relevance of nasal physiology to the design of drug absorption studies. Adv. Drug Del. Rev. 11:329–347 (1993).

    Google Scholar 

  28. R. Kravtzoff, A. Fisher, I. De Miguel, A. Perkins, M. Major, D. Betbeder, and A. Etienne. Nasal residence time evaluation of cationic BIOVECTORe in human volunteers. Proceed. Int'l. Symp. Control Rel. Bioact. Mater. 25:818–819 (1998).

    Google Scholar 

  29. L. Illum, S. Davis, M. Pawula, A. Fisher, D. Barrett, N. Farraj, and P. Shaw. Nasal administration of morphine-6-glucuronide in sheep· A pharmacokinetic study. Biopharm. Drug Dispos. 17:717–724 (1996).

    Google Scholar 

  30. K. Hosoya, H. Kubo, H. Natsume, K. Sugibayashi, and Y. Morimoto. Evaluation of enhancers to increase nasal absorption using Ussing chamber technique. Biol. Pharm. Bull. 17:316–322 (1994).

    Google Scholar 

  31. R. Kravtzoff, O. Loget, X. Manciaux, G. Cholez, I. De Miguel, M. Major, D. Betbeder, R. Forster, and A. Etienne. Empty Biovectore toxicity studies by nasal administration in rabbits and beagle dogs. Proceed Int'l. Symp. Control. Rel. Bioact. Mater. 25:691–692 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betbeder, D., Spérandio, S., Latapie, JP. et al. Biovector™ Nanoparticles Improve Antinociceptive Efficacy of Nasal Morphine. Pharm Res 17, 743–748 (2000). https://doi.org/10.1023/A:1007594602449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007594602449

Navigation