Skip to main content
Log in

Physiological roles of axonal ankyrins in survival of premyelinated axons and localization of voltage-gated sodium channels

  • Published:
Journal of Neurocytology

Abstract

440 kD ankyrin-B and 480/270 kD ankyrin-G are membrane skeletal proteins with closely related biochemical properties yet distinctive physiological roles in axons. These proteins associate with spectrin-actin networks and also bind to integral membrane proteins including the L1 CAM family of cell adhesion molecules and voltage-gated sodium channels. 440 kD ankyrin-B is expressed with L1 in premyelinated axon tracts, and is essential for survival of these axons, at least in the case of the optic nerve. 440 ankyrin-B may collaborate with L1 in transcellular structures that mediate axon fasciculation and mechanically stabilize axon bundles, although these proteins may also be involved in axon pathfinding. Ankyrin-B (−/−) mice exhibit loss of L1 from premyelinated axon tracts and a similar, although much more severe, phenotype to L1 (−/−) mice and humans with L1 mutations. Ankyrin-B and L1 thus are candidates to collaborate in the same structural pathway and defects in this pathway can lead to nervous system malformations and mental retardation. 480/270 kD ankyrin-G are highly concentrated along with the L1CAM family members neurofascin and NrCAM at nodes of Ranvier and axon initial segments. Voltage-gated sodium channels bind directly to ankyrins, and are likely to associate in a ternary complex containing neurofascin/NrCAM, and ankyrin-G. Mice with ankyrin-G expression abolished in the cerebellum exhibit loss of ability of Purkinje neurons to fire action potentials, as well as loss of restriction of neurofascin/NrCAM to axon initial segments. Ankyrin-G thus is a key component in assembly of functional components of the axon initial segment and possibly the node of Ranvier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartsch, U., Kerchief, F. & Stationer, M. (1989) Immunohistological localization of the adhesion molecules L1, N-CAM, and MAG in the developing and adult optic nerve of mice. Journal of Comparative Neurology 284, 451–462.

    Google Scholar 

  • Batchelor, A. H., Piper, D. E., De La Brousse, F. C., Mcknight, S. L. & Wolberger, C. (1998) The structure of GABPalpha/beta: an ETS domainankyrin repeat heterodimer bound to DNA. Science 279, 1037–1041.

    Google Scholar 

  • Baumgartner, R., Fernandez-Catalan, C., Winoto, A., Huber, R., Engn, R. & Holak, T. (1998) Structure of human cyclin-dependent kinase inhibitor p19INK4d: comparison to known ankyrinrepeat-containing structures and implications for the dysfunction of tumor suppressor p 16INK4a. Structure 6, 1279–1290.

    Google Scholar 

  • Bennett, V. & Gilligan, D. M. (1993) The spectrinbased membrane skeleton and micron-scale organization of the plasma membrane. Annual Review of Cell Biology 9, 27–66.

    Google Scholar 

  • Bennett, V. & J. Davis. (1981) Erythrocyte ankyrin: immunoreactive analogues are associated with mitotic structures in cultured cells and with microtubules in brain. Proceedings of the National Academy of Science USA 78, 7550–7554.

    Google Scholar 

  • Bieber A. J., Snow, P. W. Hortsch, M., Patel, N. H. Jacobs, J. R., Traquina, Z. R. Schilling, J. & Goodman, C. S. (1989) Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59, 447–460.

    Google Scholar 

  • Bodine, D. M. 4TH, Birkenmeier, S. C. & Barker, J. E. (1984) Spectrin deficient inherited hemolytic anemias in the mouse: characterization by spectrin synthesis and mRNA activity in reticulocytes. Cell 37, 721–729.

    Google Scholar 

  • Bork, P. (1993) Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins 17, 363–374.

    Google Scholar 

  • Bourguignon, L. Y., Chu, A., Jin, H. & Brandt, N. R. (1995) Ryanodine receptor-ankyrin interaction regulates internal Ca2+ release in mouse T-lymphoma cells.Journal of Biological Chemistry 270, 17917–17922.

    Google Scholar 

  • Bourguignon, L. Y., Jin, H., Iida, N., Brandt, N. R. & Zhang, S. H. (1993) The involvement of Axonal ankyrins 315 ankyrin in the regulation of inositol1,4,5 trisphosphate receptor-mediated internal Ca2+ release from Ca2+ storage vesicles in mouse T-lymphoma cells. Journal of Biological Chemistry 268, 7290–7297.

    Google Scholar 

  • Brummendorf, T., Kenwrick, S. & Rathjen, F. G. (1998) Neural cell recognition molecule L1: from cell biology to human hereditary brain malformations. Current Opinions in Neurobiology 8, 87–97.

    Google Scholar 

  • Chan, W., Kordeli, E. & Bennett, V. (1993) 440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons. Journal of Cell Biology 123, 1463–1473.

    Google Scholar 

  • Cramer P. M. & Ller C. W. (1999) A firm hand on NfkappaB: structures of the IkappaBalpha-NFkappaB complex. Structure 7, R1–6.

    Google Scholar 

  • Davis, L. H., Davis, J. Q. & Bennett, V. (1992) Ankyrin regulation: an alternatively spliced segment of the regulatory domain functions as an intramolecular modulator. Journal of Biological Chemistry 267, 18966–18972.

    Google Scholar 

  • Davis, J. Mclaughlin, T. & Bennett, V. (1993) Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain. Journal of Cell Biology 232, 121–133.

    Google Scholar 

  • Davis, J. & Bennett, V. (1994) Ankyrin-binding activity shared by the neurofascin/L1/NrCam family of nervous system cell adhesion molecules. Journal of Biological Chemistry 269, 27163–27166.

    Google Scholar 

  • Davis, J. Q., Lambert, S. & Bennett, V. (1996) Molecular composition of the node of Ranvier: Identification of ankyrin-binding cell adhesion molecules neurofascin (mucin+/third FNIII domain-) and NrCAM at nodal axon segments. Journal of Biological Chemistry 135, 1355–1367.

    Google Scholar 

  • Devarajan, P., Stabachj, P. R., Mann, A. S., Ardito, T., Kashgarian, M. & Morrow, J. S. (1996) Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus. Journal of Cell Biology 133, 819–830.

    Google Scholar 

  • Devarajan, P., Stabach, P. R., De Matteis, M. A. & Morrow, J. S. (1997) Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proceedings of the National Academy of Science USA 94, 10711–10716.

    Google Scholar 

  • Dubreuil, R. R. & Yu, J. (1994) Ankyrin and betaspectrin accumulate independently of alpha-spectrin in Drosophila. Proceedings of the National Academy of Science USA 91 10285–10289.

  • Dubreuil, R. R. Macvicar, G., Dissannyake, S., Liu, C., Homer, D. & Hortsch, M. (1996) Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites. Journal of Cell Biology 133, 647–655.

    Google Scholar 

  • Catterall, S. W. (1995) Structure and function of voltage-gated ion channels. Annual Review of Biochemistry 64, 493–531.

    Google Scholar 

  • Cleveland, J. L. & Ihle, J. N. (1995) Contenders in FasL/TNF death signaling. Cell 81, 479–482.

    Google Scholar 

  • Cohen, N. R., Taylor, J. S., Scott, L. B., Guillery, R. W., Soriano, P. & Furley, A. J. (1997) Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Current Biology 8, 26–33.

    Google Scholar 

  • Dahme, M., Bartsch, U., Martini, R., Anliker, B., Schachner, M. & Mantei, N. (1997) Disruption of the mouse L1 gene leads to malformations of the nervous system. Nature Genetics 17, 346–349.

    Google Scholar 

  • Deerinck, T. J., Levinson, S. R., Bennett, G. V. & Ellisman, E. H. (1997) Clustering of voltagesensitive sodium channels on axons is independent of direct Schwann cell contact in the dystrophic mouse. Journal of Neuroscience 17, 5080–5088.

    Google Scholar 

  • De Matteis, M. A. & Morrow, J. S. (1998) The role of ankyrin and spectrin in membrane transport and domain formation. Current Opinion in Cell Biology 10, 542–549.

    Google Scholar 

  • Dong, D., Xu, Z.-S., Chevrier, M., Cotter, R., Cleveland, D. & Hart, G. W. (1993) Glycosylation of mammalian neurofilaments. Journal of Biological Chemistry 268, 16679–16687.

    Google Scholar 

  • Dugandzija-novakovic, S., Koszowski, A. G., Levinson, S. R. & Shrager, P. (1995) Clustering of Na+ channels and node of Ranvier formation in remyelinating axons. Journal of Neuroscience 15, 492–503.

    Google Scholar 

  • Eber, S. W, Gonzalez, J. M. Lux, M. L., Scarpa, A. L., Tse, W. T., Dornwell, M., Herbers, J., Kugler, W., Ozcan, R., Pekrun, A., Gallagher, P. G., Scheroter, W., Forget, B.G. & Lux, S. E. (1996) Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Nature Genetics 13, 214–218.

    Google Scholar 

  • Fransen, E., Lemmon, V., Van Camp, G., Vits, L., Coucke, P. & Willems, P. J. (1995) CRASH syndrome: clinical spectrum of corpus callosum hypoplasia, retardation, adducted thumbs, spastic paraparesis and hydrocephalus due to mutations in one single gene, L1. European Journal of Human Genetics 3, 273–284.

    Google Scholar 

  • Fransen, E., Van Camp, G., Vits, L. & Willems, P. J. (1997) L1-associated diseases: clinical geneticists divide, molecular geneticists unite. Human Molecular Genetics 6, 1625–1632.

    Google Scholar 

  • Fransen, E., Van Camp, G., D'hooge, R., Vits, L. & Willems, P. J. (1998a) Genotype-phenotype correlation in L1 associated diseases. Journal of Medical Genetics 35(5), 399–404.

    Google Scholar 

  • Fransen, E., D'hooge, R., Van Camp, G., Verhoye, M., Sijbers, J., Reyniers, E., Soriano, P., Kamiguchi, H., Willemsen, R., Koekkoek, S. K., Zeeum, De C.I., De Deyn, P. P., Van Der Linden, A., Lemmon, V., Kooy, R. F. & Willems, P. J. (1998b) L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Human Molecular Genetics 7, 999–1009.

    Google Scholar 

  • Flucher, B. E. & Daniels, M. P. (1989) Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kD protein. Neuron 3, 163–175.

    Google Scholar 

  • Garver, T. D., Ren, Q., Tuvia, S. & Bennett, V. (1997) Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. Journal of Cell Biology 137, 703–714.

    Google Scholar 

  • Gee, S. H., Madhavan, R., Levinson, S. R., Caldwell, J. H., Sealock, R. & Froehner, S. C. (1998) Interaction of muscle and brain sodium channels with multiple members of the syntrophin family of dystrophin-associated proteins. Journal of Neuroscience 18, 128–137.

    Google Scholar 

  • Georgatos, S. & Marchesi, V. (1985) The binding of vimentin to human erythrocyte membranes: a model system for the study of intermediate filament-membrane interactions. Journal of Cell Biology 100, 1955–1961.

    Google Scholar 

  • Gorina, S. & Pavletich, N. P. (1996) Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science 274, 1001–1005.

    Google Scholar 

  • Hall, T. G. & Bennett, V. (1987) Regulatory domains of erythrocyte ankyrin. Journal of Biological Chemistry 262, 10537–10545.

    Google Scholar 

  • Haltiwanger, R. S., Blomerg, M. & Hart, G. W. (1992) Glycosylation of nuclear and cytoplasmic fractions. Journal of Biological Chemistry 267, 9005–9013.

    Google Scholar 

  • Hassel, B., Rathjen, F. G. & Volkmer, H. (1997). Organization of the neurofascin gene and analysis of developmentally regulated alternative splicing. Journal of Biological Chemistry 272, 28742–28749

    Google Scholar 

  • Hoock, T. C., Peters, L. L., & Lux, S. E. (1997) Isoforms of ankyrin-3 that lack the NH2-terminal repeats associate with mouse macrophage lysosomes. Journal of Biological Chemistry 136, 1059–1070.

    Google Scholar 

  • Hortsch, M. (1996) The L1 family of neural cell adhesion molecules: old proteins performing new tricks. Neuron 17, 587–593.

    Google Scholar 

  • Hortsch, M., Homer, D., Malhotra, J. D., Chang, S., Frankel, J., Jefford, G. & Dubreuil, R. R. (1998) Structural requirements for outside-In and inside-out signaling by Drosophila neuroglian, a member of the L1 family of cell adhesion molecules. Journal of Cell Biology 142, 251–261.

    Google Scholar 

  • Ichimura, T. & Ellisman, M. H. (1991) Threedimensional fine structure of cytoskeletal-membrane interactions at nodes of Ranvier. Journal of Neurocytology 20, 667–681.

    Google Scholar 

  • Isom, L. L., Ragsdale, D. S. Dejongh, K., Westenboek, R. E., Reber, B. F., Scheuer, T. & Catterall, W. A. (1995) Structure and function of the beta-2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83, 433–442.

    Google Scholar 

  • Isom, L. L. & Catterall, W. A. (1996) Na+ channel subunits and Ig domains. Nature 383, 307–308.

    Google Scholar 

  • Joosten, E. A. & Gribnau, A. A. (1989) Immunocytochemical localization of cell adhesion molecule L1 in developing rat pyramidal tract. Neuroscience Letters 100, 94–98.

    Google Scholar 

  • Jouet, M., Rosenthal, A., Armstrong, G., Macfarlane, J., Stevenson, R., Paterson, J., Metzenberg, A., Ionasescu, V., Temple, K. & Kenwrick, S. (1994) X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nature Genetics 7, 402–407

    Google Scholar 

  • Kalomiris, E. S. & Bourguignon, L. Y. (1988) Mouse T lymphoma cells contain a transmembrane glycoprotein (GP85) that binds ankyrin. Journal of Cell Biology 106, 319–327.

    Google Scholar 

  • Kaplan, M. R., Meyer-franke, A., Lambert, S., Bennett, V., Duncan, I. E., Levinson, S. R. & Barres, B. A. (1997) Induction of sodium channel clustering by oligodendrocytes. Nature 386, 724–728.

    Google Scholar 

  • Kobayashi, T., Storrie, B., Simons, K. & Dotti, C. G. (1992) A functional barrier to movement of lipids in polarized neurons. Nature 359, 647–650.

    Google Scholar 

  • Koenig, E. & Repasky, E. (1985) A regional analysis of alpha-spectrin in the isolated Mauthner neuron and in isolated axons of the goldfish and rabbit. Journal of. Neuroscience 5, 705–714.

    Google Scholar 

  • Kordeli, E. & Bennett, V. (1991) Distinct ankyrin isoforms at neuron cell bodies and nodes of Ranvier resolved using erythrocyte ankyrin-deficient mice. Journal of Cell Biology 114, 1243–1259.

    Google Scholar 

  • Kordeli, E., Davis, J., Trapp, B. & Bennett, V. (1990) An isoform of ankyrin is localized at nodes of Ranvier in myelinated axons of central and peripheral nerves. Journal of Cell Biology 110, 1341–1352.

    Google Scholar 

  • Kordeli, E., Lambert, S. & Bennett, V. (1995) AnkyrinG: a new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. Journal of Biological Chemistry 270, 2352–2359.

    Google Scholar 

  • Kordeli, E., Ludosky, M. A. Deprette, C., Frappier, T. & Cartaud, J. (1998) AnkyrinG is associated with the postsynaptic membrane and the sarcoplasmic reticulum in the skeletal muscle fiber. Journal of Cell Science 111, 2197–207.

    Google Scholar 

  • Kunimoto, M. (1995) A neuron-specific isoform of brain ankyrin, 440 kD ankyrinB, is targeted to axons of rat cerebellar neurons. Journal of Cell Biology 131, 1821–1830.

    Google Scholar 

  • Kunimoto, M., Otto, E. & Bennett, V. (1991) A new 440-kDa isoform is the major ankyrin in neonatal rat brain. Journal of Cell Biology 115, 1319–1331.

    Google Scholar 

  • Lambert, S., Yu, H., Prchal, J. T. et al. (1990) cDNA sequence for human erythrocyte ankyrin. Proceedings of the National Academy of Science USA 87, 1730–1734.

    Google Scholar 

  • Lambert, S. & Bennett, V. (1993) Post-mitotic expression of ankyrinR and βR-spectrin in discrete neuronal populations of the rat brain. Journal of Neuroscience 13, 3725–3735.

    Google Scholar 

  • Lmbert, S., Davis, J. & Bennett, V. (1997) Morphogenesis of the node of Ranvier: co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. Journal of Neuroscience 17, 7025–7036.

    Google Scholar 

  • Li, Z., Burke, E. P., Frank, J. S. Bennett, V. & Philipson, K. D. (1993) The cardiac Na+-Ca2+ exchanger binds to the cytoskeletal protein ankyrin. Journal of Biological Chemistry 268, 11489–11491.

    Google Scholar 

  • Lux, S. E., John, K. M. & Bennett, V. (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344, 36–42.

    Google Scholar 

  • Martini, R. (1994) Expression and functional roles of neural cell surface molecules and extracellular matrix components during development and regeneration of peripheral nerves. Journal of Neurocytology 23, 1–28.

    Google Scholar 

  • Michaely, P. & Bennett, V. (1993) The membranebinding domain of ankyrin contains four independentlyfolded subdomains each comprised of six ankyrin repeats. Journal of Biological Chemistry 268, 22703–22709.

    Google Scholar 

  • Michaely, P. & Bennett, V. (1995) The ANK repeats of erythrocyte ankyrin form two distinct but cooperative binding sites for the erythrocyte anion exchanger. Journal of Biological Chemistry 270, 22050–22057.

    Google Scholar 

  • Michaely, P. & Benett, V. (1995) Mechanism for binding site diversity on ankyrin: comparison of binding sites on ankyrin for neurofascin and the C1-/HCO3-anion exchanger. Journal of Biological Chemistry 270, 31298–31302.

    Google Scholar 

  • Nenson, W. J. & Veshnock, P. J. (1987) Ankyrin binding to the (Na+/K+) ATPase and implications for the organization of membrane domains in polarized cells. Nature 328, 533–535.

    Google Scholar 

  • Otsuka, A., Fanco, R., Yang, B., Shim, K., Tang, L., Zhang, Y., Boontrakulpoontawee, A. Jeyaprakash, E., Hedgecock, V., Wheaton, P. & Sobery, A. (1995) An ankyrin-related gene (unc-44) is necessary for proper axonal guidance in Caenorhabditis elegans. Journal of Cell Biology 129, 1081–1092.

    Google Scholar 

  • Otto, E., Kunimoto, M., Mclaughlin, T. & Bennett, V. (1991) Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively-spliced genes. Journal of Cell Biology 114, 241–253.

    Google Scholar 

  • Peters, L. L., Birkenmeirer, C. S., Bronson, R.T., White, R. A., Lux, S. E., Otto, E., Bennett, V., Higgins, A. & Barker, J. E. (1991) Purkinje cell degeneration associated with erythroid ankyrin deficiency in NB/NB mice. Journal of Cell Biology 114, 1233–1241.

    Google Scholar 

  • Peters, L. L. & Lux, S. E. (1993) Ankyrins: structure and function in normal cells and hereditary spherocytes. Seminars in Hematology 30, 85–118.

    Google Scholar 

  • Peters, L. L., John, K. M., Lu, F. M., Eicher, E. M, Higgins, A., Yialamas, M., Turtzo, L. C., Otsuka, A. J. & Lux, S. E. (1995) Ank3 (epithelial ankyrin), a widely distributed new member of the ankyrin gene family and the major ankyrin in kidney, is expressed in alternatively spliced forms, including forms that lack the repeat domain. Journal of Cell Biology 130, 313–330.

    Google Scholar 

  • Ren, Q. & Bennett, V. (1998) Palmitoylation of neurofascin at a site in the membrane-spanning domain highly conserved among the L1 family of cell adhesion molecules. Journal of Neurochemistry 70, 1839–1849.

    Google Scholar 

  • Rosenthal, A., Jouet, M. & Kenwrick, S. (1992) Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nature Genetics 2, 107–112.

    Google Scholar 

  • Scotland, P., Zhou, D., Benveniste, H. & Bennett, V. (1998) Nervous system defects of ankyrin-B (–/–) mice suggest functional overlap between the cell adhesion molecule L1 and 440 kD ankyrin-B in premyelinated axons. Journal of Cell Bioloty 143, 1305–1315.

    Google Scholar 

  • Schultz, J., Hoffmuller, U., Krause, G., Ashurst, J., Macias, M. J., Schmieder, P., Schneider-mergener, J. & Oschkinat, H. (1998) Specific interactions between the syntrophin PDZ domain and voltage-gated sodium channels. Natural Structural Biology 5, 19–24.

    Google Scholar 

  • Sonderegger, P. & Rathjen, F. G. (1992) Regulation of axonal growth in the vertebrate nervous system by interactions between glycoproteins belonging to two subgroups of the immunoglobulin superfamily. Journal of Cell Biology 119, 1387–1394.

    Google Scholar 

  • Srinivasan, Y., Elmer, L., Davis, J., Bennett, V. & Angelides, K. (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333, 177–180.

    Google Scholar 

  • Srinivasan, Y., Lewallen, M. & Angelides, K. (1992) Mapping the binding site on ankyrin for the voltage-dependent sodiumchannel from brain. Journal of Biological Chemistry 267, 7483–7489.

    Google Scholar 

  • Thevananther, S., Kolli, A. H. & Devarajan, P. (1998) Identification of a novel ankyrin isoform (AnkG190) in kidney and lung that associates with the plasma membrane and binds alpha-Na, K-ATPase. Journal of Biological Chemistry 273, 23952–23958.

    Google Scholar 

  • Trapp, B. D., Andrews, S. B., Wong, A., O'connell, M. & Griffin, J. W. (1989) Colocalization of the myelin-associated glycoprotein and the microfilament components, F-actin and spectrin, in Schwann cells of myelinated nerve fibers. Journal of Neurocytology 18, 47–60.

    Google Scholar 

  • Tuvia, S., Garver, T. D. & Bennett, V. (1997) The phosphorylation state of the FIGQY tyrosine of neurofascin determines ankyrin-binding activity and patterns of cell segregation. Proceedings of the National Academy of Science USA 94, 12957–12962.

    Google Scholar 

  • Van Camp, G., Fransen, E., Vits, L., Raes, G. & Willems, P. J. (1996) A locus-specific mutation database for the neural cell adhesion molecule L1CAM (Xq28). Human Mutation 8, 391.

    Google Scholar 

  • Winckler, B., Forscher, P. & Mellman, I. (1999) A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397: 698–701.

    Google Scholar 

  • Wong. E. V., Kenwrick, S., Willems, P. & Lemmon, V. (1995) Mutations in the cell adhesion molecule L1 cause mental retardation. Trends in Neuroscience 18, 168–172.

    Google Scholar 

  • Wood, S. J. & Slater, C. R. (1998) β-Spectrin is colocalized with voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction. Journal of Cell Biology 140, 675–684.

    Google Scholar 

  • Zhang, X. & Bennett, V. (1996) Identification of Olinked N-acetylglucosamine modification of ankyrinG isoforms targeted to nodes of Ranvier. Journal of Biological Chemistry 271, 31391–31398.

    Google Scholar 

  • Zhang, X. & Bennett, V. (1998) Restriction of 480/270 kD ankyrinG to axon proximal segments requires multiple ankyrinG-specific domains. Journal of Cell Biology 142, 1571–1581.

    Google Scholar 

  • Zhang, X., Davis, J., Carpenter. S. & Bennett, V. (1998) Structural requirements for association of neurofascin with ankyrin. Journal of Biological Chemistry 273, 30785–30794.

    Google Scholar 

  • Zhou, D., Birkenmeier, C. S., Williams, M. W. Sharp, J. J. Barker, J. E. & Bloc, R. J. (1997) Small, membrane-bound, alternatively spliced forms of ankyrin 1 associated with the sarcoplasmic reticulum of mammalian skeletal muscle. Journal of Cell Biology 136, 621–631.

    Google Scholar 

  • Zhou, D., Lambert, S., Malen, P. L., Carpenter, S., Boland, L. M. & Bennett, V. (1998) AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. Journal of Cell Biology 143, 1295–1304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennett, V., Lambert, S. Physiological roles of axonal ankyrins in survival of premyelinated axons and localization of voltage-gated sodium channels. J Neurocytol 28, 303–318 (1999). https://doi.org/10.1023/A:1007005528505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007005528505

Keywords

Navigation