Skip to main content
Log in

An investigation of astroglial morphology in Torpedo and Scyliorhinus

  • Published:
Journal of Neurocytology

Abstract

The distribution and morphology of GFAP-immunoreactive cells was investigated in two elasmobranch species, Scyliorhinus canicula and Torpedo marmorata, in an attempt to distinguish between Horstmann's (1954) hypothesis that the presence of cells resembling mammalian astrocytes is a function of the thickness of the ventricular walls, and Cajal's (1911) hypothesis that astrocytes are a phylogenetic novelty found only in birds and mammals. Two types of GFAP-reactive elements were observed, but the distribution of these differed markedly between the two species. In Scyliorhinus, radial glial cells were predominant and astrocytes relatively rare. In Torpedo, on the other hand, a species in which the ventricles are atrophied and the ventricular walls extremely thick, the overwhelming majority of GFAP-labelled structures strongly resembled astrocytes; occasionally, GFAP-positive cells were observed in the ependyma of the spinal cord. These findings, together with previous results obtained by others in hagfish, provide strong evidence in favour of Horstmann's hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AchÙcarro, N. (1915) De l′évolution de la névroglie,et spécialement de ses relations avec l′appareil vasculaire. Trabajos del Laboratorio de Investigaciones Biol´ogicas de la Universidad de Madrid 13, 169-212.

    Google Scholar 

  • Amrendra & Sensharma, G. C. (1981) Neuroglia in the Teleost (Channa striatus). Zeitschrift f ür mikroskopischanatomische Forschung 95, 108-112.

    Google Scholar 

  • Anderson, M. J., Swanson, K. A., Waxman, S. G. & Eng, L. F. (1984) Glial fibrillary acidic protein in regenerating teleost spinal cord. Journal of Histochemistry and Cytochemistry 32, 1099-1106.

    Google Scholar 

  • BÄckstrÖm, K. (1924) Contributions to the forebrain morphology in selachians. Acta Zoologica 5, 120-240.

    Google Scholar 

  • Balaton, A. J. (1993) Application des micro-ondes dans les techniques immunohistochimiques. Annales Pathologiques 3, 145-150.

    Google Scholar 

  • Bauchot, R., Platel, R. & Ridet, J.-M. (1976) Brainbody weight relationships in Selachii. Copeia 2, 305-309.

    Google Scholar 

  • Bell, P. B. JR, Rundquist, I., Svensson, I. & Collins, V. P. (1987) Formaldehyde sensitivity of a GFAPepitope, removed by extraction of the cytoskeleton with high salt. Journal of Histochemistry and Cytochemistry 35, 1375-1380.

    Google Scholar 

  • BjÖrklund, H., Bignami, A. & Dahl, D. (1985) Immunohistochemical demonstration of glial fibrillary acidic protein in normal rat Müller glia and retinal astrocytes. Neuroscience Letters 54, 363-368.

    Google Scholar 

  • Bodega, G., Suarez, I., Rubio, M. & Fernandez, B. (1990) Distribution and characteristics of the different astroglial cell types in the adult lizard (Lacerta lepida) spinal cord. Anatomy and Embrology 181, 567-575.

    Google Scholar 

  • Bodega, G., Suarez, I., Rubio, M. & Fernandez, B. (1994) Ependyma: phylogenetic evolution of glial fibrillary acidic protein (GFAP) and vimentin expression in vertebrate spinal cord. Histochemistry 102, 113-122.

    Google Scholar 

  • Bodega, G., Suarez, I., Rubio, M., Villalba, R. M. & Fernandez, B. (1993) Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anatomy and Embrology 187, 385-395.

    Google Scholar 

  • Cameron-curry, P., Viglietti-panzica, A. C. & Panzica, G. C. (1991) Immunocytochemical distribution of glial fibrillary acidic protein in the central nervous system of the Japanese quail (Coturnix coturnix japonica). Anatomy and Embryology 184, 571-581.

    Google Scholar 

  • Cardone, B. & Roots, B. I. (1990) Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus and snail. Glia 3, 180-192.

    Google Scholar 

  • Craigie, E. H., (1939) Vascularity in the brains of tailed amphibians. I. Ambystoma tigrinum (Green). Proceedings of the American Philosophical Society 81, 21-27.

    Google Scholar 

  • Craigie, E. H. (1940a)Vascularity in the brains of tailed amphibians. II. Necturus maculosus Rafinesque. Proceedings of the American Philosophical Society 82, 395-410.

    Google Scholar 

  • Craigie, E. H. (1940b) The capillary bed of the central nervous system of Dermophis (Amphibia, Gymnophiona). Journal of Morphology 67, 477-487.

    Google Scholar 

  • Craigie, E. H. (1941a) Vascularization in the brains of reptiles. II. The cerebral capillary bed in Sphenodon punctatum. Journal of Morphology 69, 263-277.

    Google Scholar 

  • Craigie, E. H. (1941b) The capillary bed of the central nervous system in a member of a second genus of Gymnophiona-Siphonops. Journal of Anatomy 76, 56-64.

    Google Scholar 

  • Craigie, E. H. (1943) The architecture of the cerebral capillary bed in lungfishes. Journal of Comparative Neurology 79, 19-31.

    Google Scholar 

  • Dahl, D. & Bignami, A. (1973) Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Research 61, 279-293.

    Google Scholar 

  • Dahl, D; Crosby, C. J., Sethi, J. S. & Bignami, A. (1985) Glial fibrillary acidic (GFA) protein in vertebrates: immunofluorescence and immunoblotting study with monoclonal and polyclonal antibodies. Journal of Comparative Neurology 239, 75-88.

    Google Scholar 

  • De guevara, R., Pairault, C. & Pinganaud, G. (1994) Expression de la vimentine et de la GFAP et développement de la rétine chez la truite. Comptes Rendus de l′Académie des Sciences 316, 455-458.

    Google Scholar 

  • Ebbesson, S. O. E. & Northcutt, R. G. (1976) Neurology of anamniotic vertebrates. In Evolution of brain and behavior in vertebrates. (edited by Masterson, R. B., Bitterman, M. E., Campbell, C. B. G. and Hotton, N., pp. 115-146. Hillsdale, N.J.: Erlbaum.

    Google Scholar 

  • Edinger, L. (1906) Über das Gehirn von Myxine glutinosa. Abhandlungen der Königlich Preussischen Akademie derWissenschaften aus dem Jahre 1906 1-36.

    Google Scholar 

  • Eng, L. F., Vanderhaeghen, J. J., Bignami, A. & Gerstl, B. (1971) An acidic protein isolated from fibrous astrocytes. Brain Research 28, 351-354.

    Google Scholar 

  • Eng, L. M. (1982) The glial fibrillary acidic protein: the major protein constituent of glial filaments. Scandinavian Journal of Immunology 15, 41-51.

    Google Scholar 

  • Eurich, F. W. (1898) Contributions to the comparative anatomy of the neuroglia. Journal of Anatomy and Physiology 32, 688-708.

    Google Scholar 

  • Evers, P. & Uylings, A. B. (1994) Microwave-stimulated antigen retrieval is pH and temperature dependent. Journal of Histochemistry and Cytochemistry 42, 1555-1563.

    Google Scholar 

  • Fox, C. H., Johnson, J. B., Whitting, J. & Roller, P. P. (1985) Formaldehyde fixation. Journal of Histochemistry and Cytochemistry 33, 845-853.

    Google Scholar 

  • Gianonatti, C., Bodega, G. & Bardasano, J. L. (1987) Neuroglia of the optic tectum in the Bufo bufo (Amphibian Anura), First Trials. Journal für Hirnforschung 29, 139-143.

    Google Scholar 

  • Horstmann, E. (1954) Die Faserglia des Selachiergehirns. Zeitschrift für Zellforschung 39, 588-617.

    Google Scholar 

  • Kalman, M., Kiss, A. & Majorossy, K. (1994) Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the red-eared freshwater turtle (Pseudemys scripta elegans). Anatomy and Embryology 189, 421-434.

    Google Scholar 

  • King, J. S. (1966) A comparative investigation of neuroglia in representative vertebrates: a silver carbonate study. Journal of Morphology 119, 435-466.

    Google Scholar 

  • Klatzo, I. (1967) Cellular morphology of the lemon shark brain. In Sharks, Skates and Rays. (edited by Gilbert, P.W., Mathewson, R. F. and Rall, D. P.), pp. 341-359, Baltimore: The Johns Hopkins Press.

    Google Scholar 

  • Kruger, L. & Maxwell, D. S. (1967) Comparative fine structure of vertebrate neuroglia: Teleosts and Reptiles. Journal of Comparative Neurology 129, 115-142.

    Google Scholar 

  • Lauro, G. M., Fonti, R. & Margotta, V. (1991) Phylogenetic evolution of intermediate filament associated proteins in ependymal cells of several adult poïkilotherm vertebrates. Journal für Hirnforschung 32, 257-261.

    Google Scholar 

  • Lazzari, M., Franceschini, V. & Ciani, F. (1997) Glial fibrillary acidic protein and vimentin in radial glia of Ambystoma mexicanum and Triturus carnifex: an immunocytochemical study. Journal of Brain Research 38, 187-194.

    Google Scholar 

  • Long, D. M., Bodenheimer, G. S., Hartmann, J. F. & Klatzo, I. (1968) Ultrastructural features of the shark brain. American Journal of Anatomy 122, 209-236.

    Google Scholar 

  • Margotta, V., Fonti, R., Palladini, G., Filoni, S. & Lauro, G. M. (1991) Transient expression of glial fibrillary acidic protein (GFAP) in the ependyma of the regenerating spinal cord in adult newts. Journal für Hirnforschung 32, 475-490.

    Google Scholar 

  • Miller, R. H. & Liuzzi, F. J. (1986) Regional specialization of the radial glial cells of the adult frog spinal cord. Journal of Neurocytology 15, 187-196.

    Google Scholar 

  • Monzon-mayor, M., Yannes, M. S., Ghandour, M. S., De Barry, J. & Gombos, G. (1990) Glial fibrillary acidic protein and vimentin immunohistochemistry in the developing and adult midbrain of the lizard Gallotia galloti. Journal of Comparative Neurology 295, 569-579.

    Google Scholar 

  • Mysliveckova, A. (1978) Ultrastructural image of the neuroglia of Fishes, Amphibians and Reptiles. Folia Morphologica 26, 49-54.

    Google Scholar 

  • Naujoks-manteuffel, B. & Roth, G. (1989) Astroglial cells in a salamander brain (Salamandra salamandra) as compared to mammals: a glial fibrillary acidic protein immunohistochemistry study. Brain Research 487, 397-401.

    Google Scholar 

  • Nicholson, C. (1998) Structure and function of the cellular elements in the central nervous system. In The Central Nervous System of Vertebrates. Vol. 1. (edited by Nieuwenhuys, R., Ten donkelaar, H. J. and Nicholson, C.), pp. 1-24. Berlin: Springer

    Google Scholar 

  • Northcutt, R. G. (1977) Elasmobranch central nervous system organization and its possible evolutionary signi-ficance. American Zoologist 17, 411-429.

    Google Scholar 

  • Onteniente, B., Kimura, H. & Maeda, T. (1983) Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. Journal of Comparative Neurology 215, 427-436.

    Google Scholar 

  • Rakic, P. (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electron microscopic study in Macacus rhesus. Journal of Comparative Neurology 141, 283-312.

    Google Scholar 

  • Ramon Y., Cajal, S. (1911) Histologie du syst`eme nerveux de l'homme et des vertébrés. Vol I et II. Paris: A. Maloine.

    Google Scholar 

  • Retzius, G. (1891) ZurKenntniss des zentralen Nervensystems von Myxine glutinosa.Biologische Untersuchungen, Neue Folge 19, 1-26.

    Google Scholar 

  • Semple-rowland, S. L. (1991) Expression of glial fibrillary acidic protein by Müller cells in rd Chick retina. Journal of Comparative Neurology 305, 581-590.

    Google Scholar 

  • Silver, M. L. (1942) The glial elements of the spinal cord of the frog. Journal of Comparative Neurology 77, 41-47.

    Google Scholar 

  • Smeets, W. J. A. J. (1998) Cartilaginous fishes. In The Central Nervous System of Vertebrates. Vol. 1. (edited by Nieuwenhuys, R., TEN DONKELAAR, H. J. AND Nicholson, C), pp. 1-24. Berlin: Springer.

    Google Scholar 

  • Smeets, W. J. A. J., Nieuwenhuys, R. & Roberts, B. L. (1983) The central nervous system of cartilaginous fishes. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

  • Stensaas, L. J. (1977) The ultrastructure of astrocytes, oligodendrocytes and microglia in the optic nerve of urodele amphibians (A.punctatum, T.pyrrhogaster, T.viridescens). Journal of Neurocytology 6, 269-286.

    Google Scholar 

  • Stensaas, L. J. & Stensaas, S. S. (1968) Light microscopy of glial cells in turtles and birds. Zeitschrift fur Zellforschung und mikroskopische Anatomie 91, 315-340.

    Google Scholar 

  • Szaro, B. G. & Gainer, H. (1988) Immunocytochemical identification of non-neuronal intermediate filament proteins in the developing Xenopus laevis nervous system. Developmental Brain Research 43, 207-224.

    Google Scholar 

  • Tapscott, S. J., Bennett, G. S., Toyama, Y., Kleinbart, F. & Holtzer, H. (1981) Intermediate filament proteins in the developing chick spinal cord. Developmental Biology 86, 40-54.

    Google Scholar 

  • Van gehuchten, A. (1898) Neuroglie dans le cervelet de l'homme. Bibliographie Anatomique 2, 146-152.

    Google Scholar 

  • Vaughan, D. K., Erickson, P. A. & Fisher, S. K. (1990) Glial fibrillary acidic protein (GFAP) immunoreactivity in rabbit retina: effect of fixation. Experimental Eye Research 50, 385-392.

    Google Scholar 

  • Virgintino, D., Maiorano, E., Bertossi, M., Pollice, L., Ambrosi, G. & Roncali, L. (1992) GFAP-immunoreactive perivascular glia in the chick optic tectum. European Journal of Histochemistry 36, 445-454.

    Google Scholar 

  • Wasowicz, M., Pierre, J., Reperant, J. Ward, R., Vesselkin, N. P. & Versaux-botteri, C. (1994) Immunoreactivity to Glial Fibrillary Acidic Protein (GFAP) in the brain and spinal cord of the lamprey (Lampetra fluviatilis). Journal of Brain Research 35, 834-837.

    Google Scholar 

  • Wicht, H., Derouiche, A. & Korf, H.-W. (1994) An immunocytochemical investigation of glial morphology in the Pacific hagfish: radial and astrocyte-like glia have the same phylogenetic age. Journal of Neurocytology 23, 565-576.

    Google Scholar 

  • Wicht, H. & Northcutt, R. G. (1992) The forebrain of the Pacific hagfish: a cladistic reconstruction of the ancestral craniate forebrain. Brain, Behavior and Evolution 40, 25-64.

    Google Scholar 

  • Wright, S. (1940) The statistical consequences of Mendelian heredity in relation to speciation. In The New Systematics (edited by HUXLEYI), pp. 191-193. Oxford University Press.

    Google Scholar 

  • Yanes, G., Monzon-mayor, M., Ghandour, M. S., De barry, J. & Gombos, G. (1990) Radial glia and astrocytes in developing and adult telencephalon of the lizard Gallotia galloti as revealed by immunohistochemistry with anti-GFAP and anti-vimentin antibodies. Journal of Comparative Neurology 295, 559-568.

    Google Scholar 

  • Yen, S.-H., Dahl, D. Schachner, M. & Shelanski, M. L. (1976) Biochemistry of the filaments of brain. Proceedings of the National Academy of Sciences of the USA 73, 529-533.

    Google Scholar 

  • Zamora, A. J. & Muttin, M. (1988) Vimentin and glial fibrillary acidic protein filaments in radial glia of the adult urodele spinal cord. Neuroscience 27, 279-288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasowicz, M., Ward, R. & Repérant, J. An investigation of astroglial morphology in Torpedo and Scyliorhinus. J Neurocytol 28, 639–653 (1999). https://doi.org/10.1023/A:1007004714712

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007004714712

Keywords

Navigation