Skip to main content
Log in

Complex mechanisms for c-fos and c-jun degradation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

c-fos and c-jun proto-oncogenes have originally been found in mutated forms in murine and avian oncogenic retroviruses. They both define multigenic families of transcription factors. Both c-jun and c-fos proteins are metabolically unstable. In vivo and in vitro work by various groups suggests that multiple proteolytic machineries, including the lysosomes, the proteasome and the ubiquitous calpains, may participate in the destruction of c-fos and c-jun. The relative contribution of each pathway is far from being known and it cannot be excluded that it varies according to the cell context and/or the physiological conditions. It has been demonstrated that, in certain occurrences, the degradation of both c-fos and c-jun by the proteasome in vivo involves the ubiquitin pathway. However, the possibility that proteasomal degradation can also occur in a manner independent of the E1 enzyme of the ubiquitin cycle remains an open issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angel P & Herrlich P (1994) in: The FOS and JUN families of transcription factors. CRC Press, Boca Raton, USA

    Google Scholar 

  2. Curran T (1988) In: Reddy EP, Skalka A–M & Curran T (eds) The Oncogene Handbook (pp 307–325) Elsevier, Amsterdam

    Google Scholar 

  3. Piechaczyk M & Blanchard J–M (1994) Critic. Rev. Oncol. Hematol. 17: 93–131

    Google Scholar 

  4. Kruijer W, Cooper JS, Hunter T & Verma IM (1984) Nature 312: 711–716

    Google Scholar 

  5. Müller R, Bravo R, Buckhardt J & Curran T (1984) Nature 312: 716–720

    Google Scholar 

  6. Lamph WW, Wamsley P, Sassone–Corsi P & Verma IM (1988) Nature 334: 629–631

    Google Scholar 

  7. Kovary K & Bravo R (1991a) Molec. Cell. Biol. 11: 2451–2459

    Google Scholar 

  8. Kovary K & Bravo R (1992) Molec. Cell. Biol. 12: 5015–5023

    Google Scholar 

  9. Ryder K & Nathans D (1988) Proc. Natl. Acad. Sci. USA 85: 8464–8467

    Google Scholar 

  10. Ryseck RP, Hirai S–H, Yaniv M & Bravo R (1988) Nature 334: 535–538

    Google Scholar 

  11. Treier M, Staszewsk LM & Bohman D (1994) Cell 78: 787–798

    Google Scholar 

  12. Quantin B & Breatnach R (1988) Nature 334: 538–540

    Google Scholar 

  13. Miao CG & Curran T (1994) Molec. Cell Biol. 14: 4295–4310

    Google Scholar 

  14. Stancovski I, Gonen H, Orian A, Schwartz AL & Ciechanover A (1995) Mol. Cell Biol. 15: 7106–7116

    Google Scholar 

  15. Salvat C, Jariel—Encontre I, Pariat M, Acquaviva C, Robbins I & Piechaczyk M (1997) in: Pandalai SG (ed) Recent development in molecular biology research (in press) Research Signpost, Trivandrum, India

    Google Scholar 

  16. Roux P, Carillo S, Blanchard J—M, Jeanteur P & Piechaczyk M (1994) In: Angel P & Herrlich P (ed) The c—fos and c—jun families of transcription factors (pp 87–93) CRL Press, Bocaraton, Floride, USA

    Google Scholar 

  17. Roux P, Blanchard J—M, Fernandez A, Lamb N, Jeanteur P & Piechaczyk M (1990) Cell 63: 341–351

    Google Scholar 

  18. Coux O, Tanaka K & Goldberg AL (1996) Ann. Rev. Biochem. (in press)

  19. Rivett JA (1993) Biochem. J. 291: 1–10

    Google Scholar 

  20. Peters J—M (1994) Trends Biochem. Sci. 19: 377–382

    Google Scholar 

  21. Kubota S, Duan L, Furuta RA, Hatanaka M & Pomerantz R (1996) J. Virol. 70: 1282–1287

    Google Scholar 

  22. Carillo S, Pariat M, Steff A—M, Roux P, Etienne—Julan M, Lorca T & Piechaczyk M (1994) Oncogene 9: 1679–1689

    Google Scholar 

  23. Croall DE & DeMartino GN (1991) Physiol. Rev. 71: 813–847

    Google Scholar 

  24. Hirai S—I, Kawasaki H, Yaniv M & Susuki K (1991) FEBS Lett. 287: 57–61

    Google Scholar 

  25. Rogers S, Wells R & Rechsteiner M (1986) Science 234: 364–368

    Google Scholar 

  26. Carillo S, Pariat M, Jariel—Encontre I, Steff A—M, Poulat F, Bertha P & Piechaczyk M (1996) Biochem. J. 313: 245–251

    Google Scholar 

  27. Slater ML & Ozer HL (1976) Cell 7: 289–295

    Google Scholar 

  28. Chowdary DR, Bermody JJ, Jha KK & Ozer HL (1994) Mol. Cell Biol. 14: 1997–2003

    Google Scholar 

  29. Kulka RG, Raboy B, Schuster R, Parag HA, Diamond A, Ciechanover A & Marcus M (1988) J. Biol. Chem. 263: 15726–15731

    Google Scholar 

  30. Finley D, Ciechanover A & Varshavsky A (1984) Cell 37: 43–55

    Google Scholar 

  31. Deveraux Q, Wells R & Rechsteiner M (1990) J Biol. Chem. 265: 6323–6329

    Google Scholar 

  32. Jariel—Encontre I, Pariat M, Martin F, Carillo S, Salvat C & Piechaczyk M (1995) J. Biol. Chem. 270: 11623–11627

    Google Scholar 

  33. Hermida—Matsumoto M—L, Chock PB, Curran T & Yang DCH (1996) J. Biol. Chem. 271: 4930–4936

    Google Scholar 

  34. Watt F & Molloy PL (1993) Nucl. Acids Res. 21: 5092–5100

    Google Scholar 

  35. Aniento F, Papavassiliou AG, Knecht E & Roche E (1996) FEBS Lett. 390: 47–52

    Google Scholar 

  36. Fuchs SY, Dolan L, Davis RJ & Ronai Z (1996) Oncogene 13: 1531–1535

    Google Scholar 

  37. Okazaki K & Sagata N (1995) EMBO J. 14: 5048–5059

    Google Scholar 

  38. Papavassiliou AG, Treier M, Chavrier C & Bohman D (1992) Science 258: 1941–1944

    Google Scholar 

  39. Tsurumi C et al (1995) Mol. Cell Biol. 15: 5682–5687

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jariel-Encontre, I., Salvat, C., Steff, AM. et al. Complex mechanisms for c-fos and c-jun degradation. Mol Biol Rep 24, 51–56 (1997). https://doi.org/10.1023/A:1006804723722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006804723722

Keywords

Navigation