Skip to main content

Advertisement

Log in

Alu Elements and the Human Genome

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Aluinsertional elements, the most abundant class of SINEs in humans are dimeric sequences approximately 300 bp in length derived from the 7SL RNA gene. These sequences contain a bipartite RNA pol III promoter, a central poly A tract, a 3′ poly A tail, numerous CpG islands and are bracketed by short direct repeats. An estimated 500,000 to 1 × 106units are dispersed throughout the human haploid genome primarily in AT rich neighborhoods located within larger GC dense chromosomal regions via a mechanism known as retroposition. Retroposition activity of Aluelements is determined by both internal and flanking regulatory elements as well as distant genes affecting transcription or transcript stability. Aluelements impact the organization and expression of the human genome at many levels including the processes of recombination, transcription and translation. Twelve subfamilies of Aluare defined by distinct patterns of diagnostic base substitutions. Subfamilies may be classified as young, intermediate or old reflecting the time since the start of retroposition by their members. Some insertions of the youngest subfamilies are not yet fixed in the human species and represent polymorphic loci. Alus are excellent molecular markers for a variety of reasons. They aid in tracing the complex pattern of duplication and rearrangements that occurred during the evolution of primate genome. Unlike other mutations, Alusequences are rarely lost completely once retroposed, have a defined ancestral state and are free from homoplasy since independent and identical insertions are highly unlikely. Because of these characteristics, Alus are literally molecular fossils. Polymorphic Aluloci are especially useful in studies of human genetic diversity and in pedigree and forensicanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D.S., R.J. Herrera, T.H. Eickbush & P.M. Lizardi, 1986. A highly reiterated family of poly A terminated, interspersed repetitive DNA elements in the genome of Bombyx mori. J. Mol Biol. 187: 465–478.

    Google Scholar 

  • Arcot, S.S., Z. Wang, J.L. Weber, P.L. Deininger & M.A. Batzer, 1995. Alurepeats: a source for the genesis of primate microsatellites. Genomics 29(l): 36–44.

    Google Scholar 

  • Arcot, S.S., A.W. Adamson, J.E. Lamerdin, B. Kanagy, P.L. Deininger, A.V. Carrano & M.A. Batzer, 1996. Alufossil relicsdistribution and insertion polymorphism. Genome Res. 6(11): 1084–1092.

    Google Scholar 

  • Arcot, S.S., M.D. DeAngelis, S.T. Sherry, A.W. Adamson, J.E. Lamerdin, P.L. Deininger, A.V. Carrano & M.A. Batzer, 1997. Identification and characterization of two polymorphicYa5 Alurepeats. Mut. Res. Gen. 382: 1–5.

    Google Scholar 

  • Bailey, A.D. & C.K. Shen, 1993. Sequential insertion of Alufamily repeats into specific genomic sites of higher primates. Proc. Natl. Acad. Sci. USA 90(15): 7205–7209.

    Google Scholar 

  • Bailliet, G., C.M. Bravi, C.I. Catanesi, V.L. Martinez-Marignac, L.B. Vidal-Rioja, R.J. Herrera, J.S. Lopez-Camelo, & N.O. Bianchi, 1998. Characterization of the Y-Chromosome of a new world Adam. J. Genet. Mol. Biol. 9(4): 101–112.

    Google Scholar 

  • Batzer, M.A, G.E. Kilroy, P.E. Richard, T.H. Shaikh, T.D. Desselle, C.L. Hoppens & P.L. Deininger, 1990. Structure and variability of recently inserted Alufamily members. Nucleic Acids Res. 18 (23): 6793–6798.

    Google Scholar 

  • Batzer, M.A & P.L. Deininger, 1991.A human-specific subfamily of Alusequences. Genomics 9(3): 481–487.

    Google Scholar 

  • Batzer, M.A., V.A. Gudi, J.C. Mena, D.W. Foltz, R.J. Herrera & P.L. Deininger, 1991. Amplification dynamics of humanspecific (HS) Alufamily members. Nucleic Acids Res. 19(13): 3619–3623.

    Google Scholar 

  • Batzer, M.A., M. Stoneking, M. Alegria-Hartman, H. Bazan, D.H. Kass, T.H. Shaikh, G.E. Novick, P.A. Ioannou, W.D. Scheer, R.J. Herrera & P.L. Deininger, 1994. African origin of human specific polymorphic Aluinsertions. Proc. Natl. Acad. Sci. USA 91: 12288–12292.

    Google Scholar 

  • Batzer, M.A., C.M. Rubin, U. Hellmann-Blumberg, M. Alegria-Hartman, E.P. Leeflang, J.D. Stern, H. Bazan, T.H. Shaikh, P.L. Deininger & C.W. Schmid, 1995. Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alurepeats. J. Mol. Biol. 247: 418–427.

    Google Scholar 

  • Batzer, M.A, P.L. Deininger, U. Hellmann-Blumberg, J. Jurka, D. Labuda, C. Rubin, C.W. Schmid, E. Zietkiewicz & E. Zuckerkandl, 1996. Standardized nomenclature for Alurepeats. J. Mol. Evol. 42: 3–6.

    Google Scholar 

  • Bell, G.I., R. Pictet & W.J. Rutter, 1980. Analysis of the regions flanking the human insulin gene and sequence of an Alufamily member. Nucleic Acids Res. 8: 4091–4109.

    Google Scholar 

  • Bianchi, N.O., G. Bailliet, C.M. Bravi, R.F. Camese, F. Rothhammer, V.L. Martinez-Marignac & S.D.J. Pena, 1997. Origin of Amerindian Y-chromosomes as inferred by the analysis of six polymorphic markers. A.J.P.A. 102(1): 79–89.

    Google Scholar 

  • Bianchi, N.O., C.I. Catanesi, G. Balliet, V.L. Martinez-Marignac, C.M. Bravi, L.B. Vidal-Rioja, R.J. Herrera & J.S. Lopez-Camelo, 1998. Characterization of ancestral and derived Ychromosome haplotypes of new world native populations. Am. J. Hum. Genet. 63: 1862–1871.

    Google Scholar 

  • Berquin, I.M, M. Ahram & B.F. Sloane, 1997. Exon 2 of human cathepsin B derives from an Aluelement. FEBS Lett. 419(l): 121–123.

    Google Scholar 

  • Bredow, S., D. Surig, J. Muller, H. Kleinert & B.J. Benecke, 1990. Activating-transcription-factor (ATF) regulates human 7S L RNA transcription by RNA polymerase III in vivoand in vitro. Nucleic Acid Res. 18(23): 6779–6784.

    Google Scholar 

  • Britten, R.J. & D.E. Kohne, 1968. Repeated sequences in DNA. Science 161: 529–540.

    Google Scholar 

  • Britten, R.J., 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231: 1393–1398.

    Google Scholar 

  • Britten, R.J., W.F. Baron, D.B. Stout & E.H. Davidson, 1988. Sources and evolution of human Alurepeated sequences. Proc. Natl. Acad. Sci. USA 85(13): 4770–4774.

    Google Scholar 

  • Britten, R.J., D.B. Stout & E.H. Davidson,1989. The current source of human Aluretroposons is a conserved gene shared with old world monkey. Proc. Natl. Acad. Sci. USA 86(10): 3718–3722.

    Google Scholar 

  • Britten, R.J., 1994. Evidence that most human Alusequences were inserted in a process that ceased about 30 million years ago. Proc. Natl. Acad. Sci. USA 91(13): 6148–6150.

    Google Scholar 

  • Britten, R.J. 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205: 177–182.

    Google Scholar 

  • Brookfield, J.F., 1994. The human-AluSINE sequences-is there a role for selection in their evolution? Bioessays 16(11): 793–795.

    Google Scholar 

  • Cavalli-Sforza, L.L. & E. Minch, 1997. Paleolithic and neolithic lineages in the European mitochondrial gene pool. Am. J. Hum. Genet. 61: 247–254.

    Google Scholar 

  • Chang, D.Y. & R.J. Maraia, 1993. A cellular protein binds B1 and Alusmall cytoplasmic RNAs in vitro. J. Biol. Chem. 268: 6423–6428.

    Google Scholar 

  • Chang, D.Y., B. Nelson, T. Bileu, K. Hsu, G. Darlington & R.J. Maraia, 1994. A human AluRNA-binding protein whose expression is associated with accumulation of small cytoplasmic AluRNA. M. C. Biol. 14: 3949–3959.

    Google Scholar 

  • Charlieu, J.P., A.M. Laurent, D.A. Carter, M. Bellis & G. Roizes, 1992. 30 AluPCR: a simple and rapid method to isolate human polymorphic markers. Nucleic Acids Res. 20(6): 1333–1337.

    Google Scholar 

  • Chen, T.L. & L. Manuelidis, 1989. SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size. Chromosoma 98(5): 309–316.

    Google Scholar 

  • Chesnokov, I. & C.W. Schmid, 1996. Flanking sequences of an Alusource stimulate transcription in vitroby interacting with sequence-specific transcription factors. J. Mol. Evol. 42: 30–36.

    Google Scholar 

  • Chu, W.M., W.M. Liu & C.W. Schmid, 1995. RNA polymerase III promoter and terminator elements affect AluRNA expression. Nucleic Acids Res. 23: 1750–1757.

    Google Scholar 

  • Chu, W.M., R. Ballard, B.W. Carpick, B.R. Williams & C.W. Schmid, 1998. Potential Alufunction: regulation of the activity of double-stranded RNA-activated kinase PKR. Mol. Cell Biol. 18(l): 58–68.

    Google Scholar 

  • Claverie, J.M., 1992. Identifying coding exons by similiarity search: Alu-derived and other potentially misleading protein sequences Genomics 12: 838–841.

    Google Scholar 

  • Cooke, H.J. & J. Hindley, 1979. Cloning of human satellite III DNA: different components are on different chromosomes. Nucleic Acids Res. 10: 3177–3197.

    Google Scholar 

  • Cox, G.S., D.W. Gutkin, M.J. Haas & D.E. Cosgrove, 1998. Isolation of an Alurepetitive DNA binding protein and effect of CpG methylation on binding to its recognition sequence. Biochimica et Biophysica Acta-Gene Structure and Expression 1396(1): 67–87.

    Google Scholar 

  • Daniels, G.R. & P.L. Deininger, 1985. Integration site preferences of the Alufamily and similar repetitive DNA sequences. Nucleic Acids Res. 13(24): 8939–8954.

    Google Scholar 

  • Daniels, G.R. & P.L. Deininger, 1991.Characterization of a third major SINE family of repetitive sequences in the galago genome. Nucleic Acids Res. 19(7): 1649–1656.

    Google Scholar 

  • Deininger, P.L., D.J. Jolly, C.M. Rubin, T. Friedman & C.W. Schmid, 1981. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J. Mol. Biol. 151(1): 17–33.

    Google Scholar 

  • Deininger, P.L. & V.K. Slagel, 1988. Recently amplified Alufamily members share a common parental Alusequence. Mol. Cell Biol. 8(10): 4566–4569.

    Google Scholar 

  • Deininger, P.L., 1989. SINEs: Short interspersed repeated DNA elements in higher eucaryotes. In Mobile DNA edited by M. Howe and D. Berg. ASM Press Washington DC.

    Google Scholar 

  • Deininger, P.L., M.A. Batzer, C. Hutchinson & M.H. Edgell, 1992. Master genes in mammalian repetitive DNA amplification. Trends in Genetics 8: 307–312.

    Google Scholar 

  • Deininger, P.L. & M.A. Batzer, 1993. Evolution of retroposons. Evolutionary Biology 27: 157–196.

    Google Scholar 

  • Del Pozzo, G. J. & Guardiola, 1990. A SINE insertion provides information on the divergence of the HLA-DQAL and HLA-DQA2 genes. Immunogenetics 31(4): 229–232.

    Google Scholar 

  • Economou, E.P., A.W. Bergen, A.C. Warren & S.E. Antonarakis, 1990. The polydeoxyadenylate tract of Alurepetitive elements is polymorphic in the human genome. Proc. Natl. Acad. Sci. USA 87(8): 2951–2954.

    Google Scholar 

  • Edwards, A., H.A. Hammond, L. Jin, C.T. Caskey & R. Chakraborty, 1992. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12: 241–253.

    Google Scholar 

  • Englander, E.W., A.P. Wolffe & B.H. Howard, 1993. Nucleosome interaction with a human Aluelement. J Biol. Chem. 268: 19565–19573.

    Google Scholar 

  • Englander, E.W. & B.H. Howard, 1995. Nucleosome positioning by human Aluelements in chromatin. J Biol. Chem. 270(17): 10091–10096.

    Google Scholar 

  • Feng, Q., J.V. Moran, H.H. Kazazian & J.D. Boeke, 1996. Human L1 Retroposition encodes a conserved endonuclease required for retrotransposition. Cell 87: 905–916.

    Google Scholar 

  • Filatov, L.V., S.E. Mamayeva & N.V. Tomilin, 1987. Non-random distribution of Alu-family repeats in human chromosomes. Mol. Biol. Rep. 12(2): 117–122.

    Google Scholar 

  • Forster, P., R. Harding, A. Torroni & H.J. Bandelt, 1996. Origin and evolution of native American mtDNA variation: a reappraisal. Am J. Hum. Genet. 59: 935–945.

    Google Scholar 

  • Fuhrman, S.A., P.L. Deininger, P. LaPorte, T. Friedmann & E.P. Geiduschek, 1981. Analysis of transcription of the human Alufamily ubiquitous repeating element by eukaryotic RNA polymerase III. Nucleic Acids Res. 9: 6439–6456.

    Google Scholar 

  • Gaudieri, S, K.M. Giles, J.K. Kulski & R.L. Dawkins, 1997. Duplication and polymorphism in theMHC: Alugenerated diversity and polymorphism within the PERB11 gene family. Hereditas 127(1–2): 37–46.

    Google Scholar 

  • Goodier, J. L. & R. J. Maraia, 1998. Terminator-specific recycling of a B1–Alutranscription complex by RNA polymerase III is mediated by the RNA terminus-binding protein La. J.B.C. 273(40): 26110–26116.

    Google Scholar 

  • Gundelfinger, E.D., M. DiCarlo, D. Zopf & M. Melli, 1984. Structure and evolution of the 7 SL RNA component of the signal recognition particle. EMBO. 3: 2325–2332.

    Google Scholar 

  • Hamdi, H., H. Nishio, R. Zielinski & A. Dugiczyk, 1999. Origin and phylogenetic distribution of AluDNA repeats: Irreversible events in the evolution of primates. J. Mol. Biol. 289: 861–871.

    Google Scholar 

  • Hammer, M.F., 1994. A recent insertion of an Aluelement on the Y chromosome is a useful marker for human population studies. Mol. Biol. Evol. 11(5): 749–761.

    Google Scholar 

  • Hanke, J.H., J.E. Hambor & P. Kavathas, 1995. Repetitive Aluelements form a cruciform structure that regulates the function of the human CD8 alpha T cell-specific enhancer. J. Mol. Biol. 246(l): 63–73.

    Google Scholar 

  • Harendza, C.J. & L.F. Johnson, 1990. Polyadenylation signal of the mouse thymidylate synthase gene was created by insertion of an L1 repetitive element downstream of the open reading frame. Proc. Natl. Acad. Sci. USA 87(7): 2531–2535.

    Google Scholar 

  • Heller, H., C. Kammer, P. Wilgenbus & W. Doerfler, 1995. Chromosomal insertion of foreign (adenovirus type 12, plasmid, or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. Proc. Natl. Acad. Sci. USA 92: 5515–5519.

    Google Scholar 

  • Houck, C.M., F.P. Rinehart & C.W. Schmid, 1979. An ubiquitous family of repeated DNA sequences in the human genome. J.Mol. Biol. 132: 289–306.

    Google Scholar 

  • Horai, S., R. Kondo, Y. Nakagawa-Hattori, S. Hayashi, S. Sonoda & K. Tajima, 1993. Peopling of the Americas, founded by four major lineages of mitochondrial DNA. Mol. Biol. Evol. 10: 23–47.

    Google Scholar 

  • Jagadeeswaran, P., B.G. Forget & S.M. Weissman, 1981. Short interspersed repetitive DNA elements in eucaryotes:Transposable DNA elements generated by reverse transcription of RNA pol III transcripts? Cell 26: 141–142.

    Google Scholar 

  • Jang, K.L., M.K. Collins & D.S. Latchman, 1992. The human immunodeficiency virus tat protein increases the transcription of human Alu repeated sequences by increasing the activity of the cellular transcription factor TFIIIC. J. Acquir. Immune Defic. Syndr. 5(11): 1142–1147.

    Google Scholar 

  • Jefferys, A.J., V. Wilson & S.L. Thein, 1985. Hypervariable ‘minisatellite’ regions in human DNA. Nature 314: 67–73.

    Google Scholar 

  • Jelnick, W.R. & C.W. Schmid, 1982. Repetitive sequences in eukaryotic DNA and their expression. Annu. Rev. Biochem. 51: 813–844.

    Google Scholar 

  • Jurka, J. & T. Smith, 1988. A fundamental division in the Alufamily of repeated sequences. Proc. Natl. Acad. Sci. USA 85(13): 4775–4778.

    Google Scholar 

  • Jurka, J. & A. Milosavljevic, 1991. Reconstruction and analysis of human Alugenes. J. Mol. Evol. 32(2): 105–121.

    Google Scholar 

  • Jurka, J. & E. Zuckerkandl, 1991. Free left arms as precursor molecules in the evolution of Alusequences. J. Mol. Evol. 33(l): 49–56.

    Google Scholar 

  • Jurka, J., 1993. A new subfamily of recently transposed Alurepeats. Nucleic Acids Res. 21: 2252.

    Google Scholar 

  • Jurka, J. & C. Pethiyagoda, 1995. Simple repetitive DNA sequences from primates: compilation and analysis. J. Mol. Evol. 40(2): 120–126.

    Google Scholar 

  • Jurka, J. & P. Klonowski, 1996. Integration of retroposable elements in mammals: selection of target sites [letter]. J.Mol. Evol. 43(6): 685–689.

    Google Scholar 

  • Jurka J., 1997. Sequence patterns indicate an enzymatic involvement in the integration of mammalian retroposons. Proc. Natl. Acad. Sci. 94: 1872–1877.

    Google Scholar 

  • Kapitonov, V. & J. Jurka, 1996. The age of Alusubfamilies. J. Mol. Evol. 42: 59–65.

    Google Scholar 

  • Kariya, Y., K. Kato, Y. Hayashizaki, S. Himeno, S. Tarui & K. Matsubara, 1987. Revision of consensus sequence of human Alurepeats-a review. Gene 53(l): 1–10.

    Google Scholar 

  • Kass, D.H., M.A. Batzer & P.L. Deininger, 1995. Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution. Mol. Cell Biol. 15(l): 19–25.

    Google Scholar 

  • Kazazian, H.H. & J.V. Moran 1998. The impact of L1 retroposons on the human genome. Nat. Genetics 19: 19–24.

    Google Scholar 

  • Kim, W., D.J. Shin, S.A.You & Y.J. Kim, 1998. Y-Specific DNA polymorphisms of the YAP element and the locus DYS19 in the Korean population. J. Hum. Genet. 43(3): 195–198.

    Google Scholar 

  • Knebelmann, B., L. Forestier, L. Drouot, S. Quinones, C. Chuet, F. Benessy, J. Saus & C. Antignac, 1995. Splice-mediated insertion of an Alusequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum. Mol. Genet. 4: 675–679.

    Google Scholar 

  • Knight, A., M.A. Batzer, M. Stoneking, H.K. Tiwari, W.D. Scheer, R.J. Herrera & P.L. Deininger, 1996. DNA sequences of Aluelements indicate a recent replacement of the human autosomal genetic complement. Proc. Natl. Acad. Sci. 93: 4360–4364.

    Google Scholar 

  • Kochanek, S., D. Renz & W. Doerfier, 1995.Transcriptional silencing of human Alusequences and inhibition of protein binding in the box B regulatory elements by 5'–CG-3' methylation. FEBS Lett. 360(2): 115–120.

    Google Scholar 

  • Krayev, A.S., T.V. Markusheva, D.A. Kramerov, A.P. Ryskov, K.G. Skryabin, A.A. Bayev & G.P. Georgiev, 1982. Ubiquitous transposon-like repeats B1 and B2 of the mouse genome: B2 sequencing. Nucleic Acids Res. 10(23): 7461–7475.

    Google Scholar 

  • Kulski, J.K., S. Gaudieri, M. Bellgard, L. Balmer, K. Giles, H. Inoko & R.L. Dawkins, 1997. The evolution of MHC diversity by segmental duplication and transposition of retroelements. J. Mol. Evol. 45(6): 599–609.

    Google Scholar 

  • Labuda, D. & G. Striker, 1989. Sequence conservation in Aluevolution. Nucleic Acids Res. 17(7): 2477–2491.

    Google Scholar 

  • Labuda D. & E. Zietkiewicz, 1994. Evolution of secondary structure in the family of 7 SL-like RNAs. J.M.E. 39: 506–518.

    Google Scholar 

  • Laurent, A.M., J. Puechberty, C. Prades, S. Gimenez & G. Roizes, 1997. Site-specific retrotransposition of L1 elements within human alphoid satellite sequences. Genomics 46(1): 127–132.

    Google Scholar 

  • Leeflang, E.P., W.M. Liu, C. Hashimoto, P.V. Choudary & C.W. Schmid, 1992. Phylogenetic evidence for multiple Alusource genes. J. Mol. Evol. 35(l): 7–16.

    Google Scholar 

  • Lehrman, M.A., D.W. Russell, J.L. Goldstein & M.S. Brown, 1987. Alu-Alurecombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J. Biol. Chem. 262: 3354–3361.

    Google Scholar 

  • Lell, J.T., M.D. Brown, T.G. Schurr, R.I. Sukemik, Y.B. Starikovskaya, A. Torroni, L.G. Moore, G.M. Troup & D.C. Wallace, 1997.Y chromosome polymorphisms in native American and Siberian populations: identification of native American Y chromosome haplotypes. Human Genetics 100(5): 536–543.

    Google Scholar 

  • Levinson, G. & G. Gutman, 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4: 203–221.

    Google Scholar 

  • Li, W.H., M. Gouy, P.M. Sharp, C. O'hUigin & Y.W. Yang, 1990. Molecular phylogeny of Rodentia, Lagomorpha, Primates and Carnivora and molecular clocks. Proc. Natl. Acad. Sci. USA 87: 6703–6707.

    Google Scholar 

  • Litt, M. & J. Luty, 1989. A hypervariable microsatellite revealed by in vitroamplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44: 397–401.

    Google Scholar 

  • Liu, W.M., E.P. Leeflang & C.W. Schmid, 1992. Unusual sequences of two old, inactive human Alurepeats. Biochim. Biophys. Acta 1132(3): 306–308.

    Google Scholar 

  • Liu, W.M., R.J. Maraia, C.M. Rubin & C.W. Schmid, 1994. Alutranscripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res. 22(6): 1087–1095.

    Google Scholar 

  • Liu, W.M., W.M. Chu, P.V. Choudary & C.W. Schmid, 1995. Cell stress and translational inhibitors transiently increase the abundance of mammalian SINE transcripts. Nucleic Acids Res. 23(10): 1758–1765.

    Google Scholar 

  • Luan D.D., M.H. Korman, J.L. Jakubczak & T.H. Eickbush, 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotranposition. Cell 72: 595–605.

    Google Scholar 

  • Luan D.D. & T.H. Eickbush, 1995. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell Biol. 15: 3822–3891.

    Google Scholar 

  • Ma, T.S., J. Ifegwu, L. Watts, M.J. Siciliano, R. Roberts & M.B. Perryman, 1991. Serial Alusequence transposition interrupting a human B creatine kinase pseudogene. Genomics 10(2): 390–399.

    Google Scholar 

  • Makalowski W., G.A. Mitchell & D. Labuda, 1994. Alusequences in the coding regions of mRNA: a source of protein variability. Trends in Genetics 10(6): 188–193.

    Google Scholar 

  • Maraia, R.J., D. Chang, A. Wolfe, R. Vorce & K. Hsu, 1992. The RNA polymerase III terminator used by a B1–Aluelement can modulate 3' processing of the intermediate RNA product. M.C. Biol. 12: 1500–1506.

    Google Scholar 

  • Maraia R.J., C.T. Driscoll, T. Bilyeu, K. Hsu & G.J. Darlington, 1993. Multiple dispersed loci produce small cytoplasmic AluRNA. Mol. Cell Biol. 13(7): 4233–4221.

    Google Scholar 

  • Maraia R.J. D.J. Kenan & J.D. Keene, 1994. Eukaryotic transcription termination factor La mediates transcript release and facilitates reinitiation by RNA polymerase III. M.C. Biol. 14: 2147–2158.

    Google Scholar 

  • Martin, M.A., T. Bryan, S. Rasheed & A.S. Khan, 1981. Identification and cloning of endogenous retroviral sequences present in human DNA. Proc. Natl. Acad. Sci. USA 78: 4892–4896.

    Google Scholar 

  • Matera, A.G., U. Hellmann, M.F. Hintz & C.W. Schmid, 1990. Recently transposed Alurepeats result from multiple source genes. Nucleic Acids Res. 18(20): 6019–6023.

    Google Scholar 

  • Mathias, S.L., A.F. Scott, H.H. Kazazian, J.D. Boeke & A. Gabriel, 1991. Reverse transcriptase encoded by a human transposable element. Science 254: 1808–1810.

    Google Scholar 

  • McKie, A.B., T. lwamura, H.Y. Leung, M.A. Hollingsworth & N.R. Lemoine, 1997. Alu-polymerase chain reaction genomic fingerprinting technique identifies multiple genetic loci associated with pancreatic tumourigenesis. Genes Chromosomes Cancer 18(1): 30–41.

    Google Scholar 

  • Mighell, A.J., A.F. Markham & P.A. Robinson, 1997. Alusequences. FEBS Lett. 417(l): 1–5.

    Google Scholar 

  • Milewitcz, D.M., P.H. Beyers, J. Reveille, A.L. Hughes & M. Duvic, 1996. A dimorphic AluSb-like insertion in COL3A1 is ethnic specific. J. Mol. Evol. 42: 117–123.

    Google Scholar 

  • Minami, M., K. Poussin, C. Brechot & P. Paterlini, 1995. A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome. Genomics 29(2): 403–408.

    Google Scholar 

  • Mitchell, G.A., D. Labuda, G. Fontaine, J.M. Saudubray, J.P. Bonnefont, S. Lyonnnet, L.C. Brody, G. Steel, C. Obie & D. Valle, 1991. Splice-mediated insertion of an Alusequence inactivates orinthinedelta-aminotransferase: a role for Aluelements in human mutation Proc. Natl. Acad. Sci. USA 88: 815–819.

    Google Scholar 

  • Mnukova-Fajdelova, M., Y. Satta, C. O'hUigin, W.E. Mayer, F. Figueroa & J. Klein, 1994. Aluelements of the primate major histocompatibility complex. Mamm. Genome 5(7): 405–415.

    Google Scholar 

  • Moos, M. & D. Gallwitz, 1983. Structure of two human b-lactinrelated processed genes one of which is located next to a simple repetitive sequence. EMBO J 2: 757–761.

    Google Scholar 

  • Mount, S.M. & G.M. Rubin, 1985. Complete nucleotide sequences of the Drosophilatransposable element copia: homology between copiaand retroviral proteins. Mol. Cell. Biol. 5: 1630–1638.

    Google Scholar 

  • Moyzis, R.K., D.C. Torney, J. Meyne, J.M. Buckingham, J.R. Wu, C. Burks, K.M. Sirotkin & W.B. Goad, 1989. The distribution of interspersed repetitive DNA sequences in the human genome. Genomics 4(3): 273–289.

    Google Scholar 

  • Mullersman, J.E. & L.M. Pfeffer, 1995. An Alucassette in the cytoplasmic domain of an interferon receptor subunit. J. Interferon Cytokine Res. 1995. 15: 815–817.

    Google Scholar 

  • Nadir, E., H. Margalit, T. Gallily & S.A. Ben-Sasson, 1996. Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc. Natl. Acad. Sci. USA 93: 6470–6475.

    Google Scholar 

  • Nelson, D.L., S.A. Ledbetter, L. Corbo, M.F. Victoria, R. Ramirez-Solis, T.D. Webster, D.H. Ledbetter & C.T. Caskey, 1989. Alupolymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources. Proc. Natl. Acad. Sci. USA 86: 6686–6690.

    Google Scholar 

  • Novacek, M.J., 1992. Mammalian phylogeny: Shaking up the tree. Nature 356: 121–125.

    Google Scholar 

  • Novick, G.E., T. Gonzalez, J. Garrison, C.C. Novick, M.A. Batzer, P.L. Deininger & R.J. Herrera, 1993. The use of polymorphic Aluinsertions in human DNA fingerprinting. EXS 67: 283–291.

    Google Scholar 

  • Novick, G.E., C.M. Menedez, C.C. Novick, G. Duncan, J. Yunis, E. Yunis, P.L. Deininger, M.A. Batzer & R.J. Herrera, 1994. The use of polymorphic Aluinsertions as a new methodological alternative in human paternity testing and child identification. Int. Ped. 9(2): 60–68.

    Google Scholar 

  • Novick, G.E., C.C Novick, J. Yunis, E. Yunis, K. Martinez, G. Duncan, G.M. Troup, P.L. Deininger, M. Stoneking, M.A. Batzer & R.J. Herrera, 1995. Polymorphic human specific Aluinsertions as markers for human identification. Electrophoresis 16: 1596–1601.

    Google Scholar 

  • Novick, G.E., M.A. Batzer, P.L. Deininger & R.J. Herrera, 1996. The mobile genetic element Aluin the human genome. Bioscience 46: 32–41.

    Google Scholar 

  • Novick, G.E., C.C. Novick, J. Yunis, E. Yunis, P. Antunez de Mayolo, W.D. Scheer, P.L. Deininger, M. Stoneking, D.S. York, M.A. Batzer & R.J. Herrera, 1998. Polymorphic Aluinsertions and the Asian origin of native American populations. Hum. Biol. 70(1): 23–39.

    Google Scholar 

  • Okada, N., 1991. SINEs. Curr. Opin. Genet. Dev. 1(4): 498–504.

    Google Scholar 

  • Olds, R.J., D.A. Lane, V. Chowdhury, G. Sas, I. Pabinger, K. Auberger & S.L. Thein, 1994.(ATT) Trinucleotide repeats in the antithrombin gene and their use in determining the origin of repeated mutations. Hum Mutat. 4(1): 31–41.

    Google Scholar 

  • Oliviero, S. & P. Monaci, 1988. RNA polymerase III promoter elements enhance transcription of RNA polymerase II genes. Nucleic Acids Res. 16(4): 1285–1293.

    Google Scholar 

  • Paulson, K.E., N. Deka, C.W. Schmid, R. Misra, C. Schindler, M. Rush, L. Kadyk & L. Leinwand, 1985. A transposon-like element in human DNA. Nature 316: 359–363.

    Google Scholar 

  • Passarino, G., O. Semino, L. Quintana-Murci, L. Excoffier, M. Hammer & A.S. Santachiara Benerecetti, 1998. Different genetic components in the Ethiopian population, identified by mtDNA and Y-chromosome polymorphisms. American J. Human Genetics 62 (2): 420–434.

    Google Scholar 

  • Perna, N.T., M.A. Batzer, P.L. Deininger & M. Stoneking, 1992. Aluinsertion polymorphism: a new type of marker for human population studies. Hum Biol. 64(5): 641–648.

    Google Scholar 

  • Perez-Stable, C., T.M. Ayres & C.K. Shen, 1984. Distinctive sequence organization and functional programing of an Alurepeat promoter. Proc. Natl. Acad. Sci. USA 81: 5291–5295.

    Google Scholar 

  • Pleij, C.W.A., 1990. Pseudoknots: A new motif in the RNA game. Trends Biochem. Sci. 15: 143–147.

    Google Scholar 

  • Prades, C., A.M. Laurent, J. Puechberty, Y. Yurov & G. Roizes, 1996. SINE and LINE within human centromeres. J. Mol. Evol. 42(l): 37–43.

    Google Scholar 

  • Quentin, Y., 1992. Origin of the Alufamily: a family of Alu-like monomers gave birth to the left and the right arms of the Aluelements. Nucleic Acids Res. 20(13): 3397–3401.

    Google Scholar 

  • Riccio, M.L. & G.M. Rossolini, 1993. Unusual clustering of Alurepeats within the 5'-flanking region of the human lysozyme gene. DNA Seq. 4(2): 129–134.

    Google Scholar 

  • Rodriguez-Delfin, L., S.E.B. Santos & M.A. Zago, 1997. Diversity of the human Y chromosome of South American Amerindians: a comparison with blacks, whites, and Japanese from Brazil. Annals of Human Genetics 61: 439–448.

    Google Scholar 

  • Rogers, J., 1985. The origin and evolution of retroposons. Int. Review Cytology 93: 187–279.

    Google Scholar 

  • Rinehart, F.P., T.G. Ritch, P.L. Deininger & C.W. Schmid, 1981. Renaturation rate studies of a single family of interspersed repeated sequences in human deoxyribonucleic acid. Biochemistry 20: 3003–3010.

    Google Scholar 

  • Ruiz-Linares, A., K. Nayar, D.B. Goldstein, J.M. Herbert, M.T. Seielstad, P.A. Underhill, A.A. Lin, M.W. Feldman & L.L. Cavalli-Sforza, 1996. Geographic clustering of human Y chromosome haplotypes, Am. J. Hum. Genet. 60: 401–408.

    Google Scholar 

  • Santos, F.R., N.O. Bianchi & S.D. Pena, 1996.Worldwide distribution of human Y-chromosome haplotypes. Genome Res. 6(7): 601–611.

    Google Scholar 

  • Sarrowa, J., D.Y. Chang & R.J. Maraia, 1997. The decline in human Aluretroposition was accompanied by an asymmetric decrease in SRP9/14 binding to dimeric AluRNA and increased expression of small cytoplasmic AluRNA. Mol. Cell Biol. 17(3): 1144–1151.

    Google Scholar 

  • Schmid, C.W. & C.J. Shen, 1985. The evolution of interspersed repetitive DNA sequences in mammals and other vertebrates, pp. 323–358. in Molecular Evolutionary Genetics edited by R.J. MacIntire. Plenum. New York.

    Google Scholar 

  • Schmid C.W., N. Deka & A.G. Matera, 1990. Repetitive human DNA: the shape of things to come. pp. 3–29. In Chromosomes eukaryotic, prokaryotic and viral edited by K.W. Adolph. CRC Press, Boca Raton Fl.

    Google Scholar 

  • Schmid, C.W., 1991. Human Alusubfamilies and their methylation revealed by blot hybridization. Nucleic Acids Res. 19(20): 5613–5617.

    Google Scholar 

  • Schmid, C. & R. Maraia, 1992. Transcriptional regulation and transpositional selection of active SINE sequences. Curr. Opin. Genet. Dev. 2(6): 874–882.

    Google Scholar 

  • Schmid, C.W., 1996. Alustructure, origin, evolution, significance, and function of one-tenth of human DNA. Progress in Nucleic Acid Res. Molecular Bio. 53: 283–319.

    Google Scholar 

  • Sherry, S.T., H.C. Harpending, M.A. Batzer & M. Stoneking, 1997. Aluevolution in human populations: Using the coalescent to estimate effective population size. Genetics 147(4): 1977–1982.

    Google Scholar 

  • Shaikh, T.H. & P.L. Deininger, 1996. The role and amplification of the HS Alusubfamily founder gene. J. Mol. Evol. 42(l): 15–21.

    Google Scholar 

  • Shriver, M.D., G. Siest & E. Boerwinkle, 1992. Length and sequence variation in the apolipoprotein B intron 20 Alurepeat. Genomics 14(2): 449–454.

    Google Scholar 

  • Sidhu, M.S., B.K. Helen & R.S. Athwal, 1992. Fingerprinting human chromosomes by polymerase chain reaction-mediated DNA amplification. Genomics 14(3): 728–732.

    Google Scholar 

  • Siegel, V. & P. Walter, 1986. Removal of the Alustructural domain from signal recognition particle leaves its protein translocation activity intact. Nature 320: 81–84.

    Google Scholar 

  • Singer, M., 1982. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28: 433–434.

    Google Scholar 

  • Sinnett, D., J.M. Deragon, L.R. Simard & D. Labuda, 1990. Alumorphs-human DNA polymorphisms detected by polymerase chain reaction using Alu-specific primers. Genomics 7(3): 331–334.

    Google Scholar 

  • Sinnett, D. C. Richer, J.M. Deragon & D. Labuda, 1991. AluRNA secondary structure consists of two independent 7SL RNA-like folding units. J. Biol. Chem. 266(14): 8675–8678.

    Google Scholar 

  • Sinnett, D., C. Richer, J.M. Deragon & D. Labuda, 1992. AluRNA transcripts in human embryonal carcinoma cells. Model of post-transcriptional selection of master sequences. J. Mol. Biol. 226(3): 689–706.

    Google Scholar 

  • Slagel, V., E. Flemington, V. Traina-Dorge, H. Bradshaw & P. Deininger, 1987. Clustering and subfamily relationships of the Alufamily in the human genome. Mol. Biol. Evol. 4(l): 19–29.

    Google Scholar 

  • Smit, A.F. & A.D. Riggs, 1995. MIRs are classic, tRNA-derived SINEs that amplified before the mammalian radiation. Nucleic Acids Res. 23(l): 98–102.

    Google Scholar 

  • Smit A.F., 1996. The origin of interspersed repeats in the human genome. Current Opinion in Genetics and Development 6: 743–748.

    Google Scholar 

  • Szmulewicz, M.N., G.E. Novick & R.J. Herrera, 1998. Effects of Aluinsertions on gene function. Electrophoresis 19: 1260–1264.

    Google Scholar 

  • Szmulewicz, M.N., L.M. Andino, E. P. Reategui, T. Woolley-Barker, C.J. Jolly, T.R. Disotell & R.J. Herrera, 1999, An Aluinsertion polymorphism in a baboon hybrid zone. Am. J. Phy. Anthro. 109: 1–8.

    Google Scholar 

  • Stefanescu, G., M. Caraghin, N. Azoitei & A. Azoitei, 1997. Preliminary estimation of the Y Alupolymorphic (YAP) element in the Romanian population. Gene Geogr. 111(l): 47–50.

    Google Scholar 

  • Stoneking, M., J.J. Fontius, S.L. Clifford, H. Soodyall, S.S. Arcot, N. Saha, T. Jenkins, M.A. Tahir, P.L. Deininger & M.A. Batzer, 1997. Aluinsertion polymorphisms and human evolution: Evidence for a larger population size in Africa. Genome Res. 7: 1061–1071.

    Google Scholar 

  • Stoppa-Lyonnet, D., P.E. Carter, T. Meo & M. Tosi, 1990. Clusters of intragenic Alurepeats predispose the human Cl inhibitor locus to deleterious rearrangements. Proc. Natl. Acad. Sci. USA 87(4): 1551–1555.

    Google Scholar 

  • Strout, M.P., G. Marcucci, C.D. Bloomfield & M.A. Caligiuri, 1998. The partial tandem duplication of ALL1(MLL) is consistently generated by Alu-mediated homologous recombination in acute myeloid leukemia. Proc Natl. Acad. Sci. USA 95(5): 2390–2395.

    Google Scholar 

  • Tautz, D. & M. Renz, 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127–4138.

    Google Scholar 

  • Thomas, E. & R.J. Herrera, 1998. Multiplex polymerase chain reaction of Alupolymorphic insertions. Electrophoresis 19(14): 2373–2379.

    Google Scholar 

  • Toda, Y. & M. Tomita, 1997. Aluelements as an aid in deciphering genome rearrangements. Gene 205: 173–176.

    Google Scholar 

  • Tomilin, N.V., S.M. Iguchi-Ariga & H. Ariga, 1990. Transcription and replication silencer element is present within conserved region of human Alurepeats interacting with nuclear protein. FEBS Lett. 263(l): 69–72.

    Google Scholar 

  • Tomilin, N.V., V.M. Bozhkov, E.M. Bradbury & C.W. Schmid, 1992. Differential binding of human nuclear proteins to Alusubfamilies. Nucleic Acids Res. 20(12): 2941–2945.

    Google Scholar 

  • Torroni, A., R. Sukernik, T. Schurr, Y. Starikovskya, M. Cabell, M. Crawford, A. Comuzzie & D. Wallace, 1993. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with native Americans. Am. J. Hum. Genet. 53: 591–603.

    Google Scholar 

  • Ullu, E. & C. Tschudi, 1984. Alusequences are processed 7SL RNA genes. Nature 312: 171–172.

    Google Scholar 

  • Ullu, E. & A.M. Weiner, 1985. Upstream sequences modulate the internal promoter of the human 7SL RNA gene. Nature 18(6044): 371–374.

    Google Scholar 

  • Underhill, P., L. Jin, S.Q. Mehdi, T. Jenkins, D. Vollrath, R.W. Davis, L.L. Cavalli-Sforza & P. Oefner, 1997. Detection of numerous Y chromosome biallelic polymorphisms by Denaturing High Performance Liquid Chromatography. Genome Res. 7: 996–1005.

    Google Scholar 

  • Van Ardsell, S.W., R.A. Denison, L.B. Bernstein & A.M. Weiner, 1981. Direct repeats flank three small nuclear RNA pseudogenes in the human genome. Cell 26: 11–17.

    Google Scholar 

  • Vansant, G. & W.F. Reynolds, 1995. The consensus sequence of a major Alusubfamily contains a functional retinoic acid response element. Proc. Natl. Acad. Sci. USA 92: 8229–8233.

    Google Scholar 

  • Vidaud, D., M. Vidaud, B.R. Bahnak, V. Siguret, S. Sanchez, Y. Laurian, D. Meyer, M. Goosens & J.M. Lavergne, 1993 Eur. J. Hum. Genet. 1: 30–36.

    Google Scholar 

  • Wallace, M.R., L.B. Anderson, A.M. Saulino, P.E. Gregory, T.W. Glover & F.S. Collins, 1991. A de novo Aluinsertion results in neurofibromatosis type 1. Nature 353: 864–866.

    Google Scholar 

  • Walter, P. & G. Blobel, 1982. Signal recognition particle contains a 7SL RNA essential for protein translocation across the endoplasmic reticulum Nature 299: 691–698.

    Google Scholar 

  • Waring, M. & R.J. Britten, 1966. Nucleotide sequence repetition: a rapidly reassociating fraction of mouse DNA. Science 154(750): 791–794.

    Google Scholar 

  • Weber, J. & P. May, 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.

    Google Scholar 

  • Weichenrieder, O., U. Kapp, S. Cusack & K. Strub, 1997. Identification of a minimal AluRNA folding domain that specifically binds SRP9/14. RNA 3(11): 1262–1274.

    Google Scholar 

  • Weiner, A.M., P.L. Deininger & A. Efstratiadis, 1986. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem. 55: 631–661.

    Google Scholar 

  • Wevrick, R. & H.W. Willard, 1989. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of humanchromosomes: high-frequency array-length polymorphism and meiotic stability. Proc. Natl. Acad. Sci. USA 86: 9394.

    Google Scholar 

  • Xu, L.P., J.J. Xu, S.L. Zhu, W.D Bao & R.F. Du, 1998. Distribution of YAP in 10 populations of China. Chinese Science Bulletin 43(12): 1023–1025.

    Google Scholar 

  • Yandava, C.N., J.M. Gastier, J.C. Pulido, T. Brody, V. Sheffield, J. Murray, K. Buetow & G.M. Duyk, 1997. Characterization of Alurepeats that are associated with trinucleotide and tetranucleotide repeat microsatellites. Genome Res. 7(7): 716–724.

    Google Scholar 

  • York D.S., V. Blum, J. Low, D. Rowold, V. Puzyrev, V. Saliukov, O. Odinokova & R.J. Herrera, 2000. Phylogenetic signals from point mutations and polymorphic Aluinsertions. (in press in Genetica).

  • Yulug, I.G., A. Yulug & F.M. Fisher, 1995. The frequency and position of Alurepeats in cDNAs, as determined by database searching. Genomics 27(3): 544–548.

    Google Scholar 

  • Zietkiewicz, E., C. Richer, D. Sinnett & D. Labuda, 1998. Monophyletic origin of Alu elements in primates. J. Mol. Evol. 42(2): 172–182.

    Google Scholar 

  • Zuliani, G. & H.H. Hobbs, 1990. A high frequency of length polymorphisms in repeat sequences adjacent to Alusequences. Am. J. Hum. Genet. 46(5): 963–969.

    Google Scholar 

  • Zwieb, C., 1985. The secondary structure of the 7 SL RNA in the signal recognition particle: functional implications. Nucleic Acids Res. 13(4): 6105–6124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowold, D.J., Herrera, R.J. Alu Elements and the Human Genome. Genetica 108, 57–72 (2000). https://doi.org/10.1023/A:1004099605261

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004099605261

Navigation