Skip to main content
Log in

Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Osteoclasts resorb bone by a complex dynamic process that initially involves attachment, polarization and enzyme secretion, followed by their detachment and migration to new sites. In this study, we postulated that mineralized and osteoid bone matrix signal osteoclasts differently, resulting in the resorption of mineralized bone matrix only. We, therefore, compared the cytoplasmic distribution of cytoskeletal proteins F-actin and vinculin using confocal laser-scanning microscopy in osteoclasts cultured on mineralized and demineralized bone slices and correlated the observations with their functional activity. Our results have demonstrated significant differences in F-actin and vinculin staining patterns between osteoclasts cultured on mineralized bone matrix and those on demineralized bone matrix. In addition, the structural variations were accompanied by significant differences in bone resorbing activity between osteoclasts grown on mineralized bone matrix and those on demineralized bone matrix after 24 h of culture -- resorption only occurring in mineralized bone but not in demineralized bone. These results indicated that failure of osteoid bone resorption is caused by perturbation of osteoclast polarization. © 1998 Chapman & Hall

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baron, R. (1993) Cellular and molecular biology of the osteoclast. In Cellular and Molecular Biology of Bone (edited by Noda, M. ), pp. 445-95.

  • Baron, R. (1989) Polarity and membrane transport in osteoclasts. Conn. Tissue Res. 20, 109-20.

    Google Scholar 

  • Baron, R., Neff, L., Louvard, D. & Courtoy, P.J. (1985) Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localisation of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J. Cell Biol. 101, 2210-22.

    Google Scholar 

  • Baron, R., Neff, L., Brown, W., Courtoy, P.J., Couvard, D. & Farquhar, M.G. (1988) Polarised secretion of lysosomal enzymes: co-distribution of cation-independent mannose-6-phosphate receptors and lysosomal enzymes along the osteoclast exocytic pathway. J. Cell Biol. 106, 1863-72.

    Google Scholar 

  • Burridge, K. & Connell, L. (1983) A new protein of adhesion plaques and ruffling membranes. J. Cell Biol. 97, 359-67.

    Google Scholar 

  • Chambers, T. J., Thomson, B.M. & Fuller, K. (1984) Effect of substrate composition on bone resorption by rabbit osteoclasts. J. Cell Sci. 70, 61-71.

    Google Scholar 

  • Geiger, B., Tokuyasu, K.T., Dutton, A.H. & Singer, S. J. (1980) Vinculin, an intracellular protein localised at specialised sites where microfilament bundles terminate at cell membranes. Proc. Natl. Acad. Sci. USA 77, 4127-31.

    Google Scholar 

  • Gupta, A., Edwards, J.C. & Hruska, K.A. (1996) Cellular distribution and regulation of NHE-1 isoform of the Na-H exchange in the avian osteoclast. Bone 18, 87-95.

    Google Scholar 

  • Lakkakorpi, P., Tuukkanen, F., Hentunen, T., Jarvelin, K. & Vaananen, K. (1989) Organisation of the osteoclast microfilaments during the attachment to bone surface in vitro. J. Bone Min. Res. 4, 817-25.

    Google Scholar 

  • Lucht, U. (1972) Osteoclasts and their relationship to bone as studied by electron microscopy. Zellforsch. Mikrosk. Anat. 135, 211-28.

    Google Scholar 

  • Marchisio, P. (1984) Cell substratum interactions of cultured avain osteoclasts is mediated by specific adhesion structures. J. Cell Biol. 99, 1696-705.

    Google Scholar 

  • Miller, S. (1977) Osteoclast cell surface changes during the egg laying cycle in Japanese quail. J. Cell Biol. 75, 104-18.

    Google Scholar 

  • Nakamura, I., Takahashi, N., Sasaki, T., Kurokawa, T. & Suda, T. (1996) Chemical and physical properties of the extra cellular matrix are required for the actin ring formation in osteoclasts. J. Bone Min. Res. 11, 1873-9.

    Google Scholar 

  • Oldberg, A., Franzen, A. & Heinegard, D. (1986) Cloning sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cellbinding sequence. Proc. Natl. Acad. Sci. USA 83, 8819-323.

    Google Scholar 

  • Oldberg, A., Franzen, A., Heinegard, D., Pierschbacher, M. & R UOSALAHTI, E. (1988) Identification of a bone sialoprotein receptor in osteocarcoma cells. J. Biol. Chem. 263, 19433-6.

    Google Scholar 

  • Palokangas, H., Mulari, M. & Vaananen, H.K. (1997) Endocytic pathway from the basal plasma membrane to the ruffled border membrane in bone-resorbing osteoclasts. J. Cell. Sci. 110, 1767-80.

    Google Scholar 

  • Reinholt, F.P.K., Hullenby, A., Oldberg, A. & Heinegard, D. (1990) Osteopontin: a possible anchor of osteoclasts to bone. Proc. Natl. Acad. Sci. USA 87, 4473-5.

    Google Scholar 

  • Ross, F.P., Alvarez, J. I., Chappel, J., Sander, D., Butler, W.T., Farach-Carson, M.C., Mintz, K.A., Robey, P.G., Teitelbaum, S.L. & Cheresh, D.A. (1993) Interactions between matrix proteins osteopontin and bone sialoprotein and the osteoclast integrin αvβ3 potentiate bone resorption. J. Biol. Chem. 268, 9901-7.

    Google Scholar 

  • Stevenson, S. & Horowitz, M. (1992) The response to bone allografts. J. Bone Joint Surg. 74A, 939-51.

    Google Scholar 

  • Termine, J. (1993) Bone matrix proteins and the minerlisation process. In Primer on the Metabolic Bone Disease and Disorders of Mineral Metabolism. 2nd edn (edited by Favus, M. ), pp. 21-5. New York: Raven Press.

    Google Scholar 

  • Teti, A., Blair, H.C., Schlesinger, P.H., Grano, M., Zambonin Zallone, A., Kahn, A. J., Teitelbaum, S.L. & H RUSKA, K.A. (1989) Extracellular protons acidify osteoclasts, reduce cytosolic calcium and promote expression of cell-matrix attachment structure. J. Clin. Invest. 84, 773-80.

    Google Scholar 

  • Teti, A., Marchisio, P.C. & Zambonin Zallone, A. (1991) Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity. Am. J. Physiol. 261, C1-7.

    Google Scholar 

  • Turksen, K., Kaneskia, J., Opas, M., H EERSCH, J.N. & Aubin, J.E. (1988) Adhesion patterns and cytoskeleton of rabbit osteoclasts on bone slices and glass. J. Bone Min. Res. 3, 389-400.

    Google Scholar 

  • Urist, M. (1965) Bone: formation by autoinduction. Science 150, 893-9.

    Google Scholar 

  • Wozney, J.M., Rosen, V., Celeste, A.F., Mitsock, L.M., Whitters, M.J., Kriz, R.W., Hewick, R.M. & Wang, E.A. (1988) Novel regulators of bone formation: molecular clones and activities. Science 242, 1528-34.

    Google Scholar 

  • Zheng, M.H., Papadimitriou, J.M. & Nicholson, G.C. (1991a) RNA synthesis in isolated rat osteoclasts: inhibitory effect of calcitonin. Bone 12, 317-22.

    Google Scholar 

  • Zheng, M.H., Papadimitriou, J.M. & Nicholson, G.C. (1991b) A quantitative cytochemical investigation of osteoclasts and multinucleate giant cells. Histochem. J. 23, 180-8.

    Google Scholar 

  • Zheng, M.H., Wood, D. J. & Papadimitriou, J.M. (1992) What's new in role of cytokine in osteoblast proliferation and differentiation. Pathol. Res. Pract. 188, 1104-21.

    Google Scholar 

  • Zheng, M.H., Fan, Y., Wysocki, S., Wood, D.J. & Papadimitriou, J.M. (1993) Detection of mRNA for carbonic anhydrase II in human osteoblast-like cells by in-situ hybridisation. J. Bone Min. Res. 8, 111-16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

YOVICH, S., SEYDEL, U., PAPADIMITRIOU, J.M. et al. Evidence that failure of osteoid bone matrix resorption is caused by perturbation of osteoclast polarization. Histochem J 30, 267–273 (1998). https://doi.org/10.1023/A:1003263907320

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003263907320

Keywords

Navigation