Skip to main content
Log in

Mendelian Randomization and the Environmental Epigenetics of Health: a Systematic Review

  • Environmental Epigenetics (A Baccarelli and A Cardenas, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Epigenetic modifications are environmentally responsive and may play a mechanistic role in the development of disease. Mendelian randomization uses genetic variation to assess the causal effect of modifiable exposures on health outcomes. We conducted a systematic review of Mendelian randomization studies evaluating the causal role of DNA methylation (DNAm) changes on the development of health states, emphasizing on studies that formally evaluate exposure-DNAm, in addition to DNAm-outcome, causal associations.

Recent Findings

We identified 15 articles, 4 of them including an environmental determinant of DNAm, including self-reported tobacco smoke exposure, in utero tobacco smoke exposure, measured vitamin B12, and glycemia.

Summary

Selected articles suggest a causal association of DNAm with some cardiometabolic endpoints. DNAm seemed to partly explain the association of postnatal and prenatal exposure to tobacco smoke and vitamin B12 with inflammation biomarkers, birth weight, and cognitive outcomes, respectively. However, the current evidence is not sufficient to infer causality. Additional Mendelian randomization studies from large epidemiologic samples are needed to support the causal role of environmental factors as determinants of health-related epigenetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Feinberg AP. Epigenetics at the epicenter of modern medicine. JAMA. 2008;299:1345–50.

    Article  PubMed  CAS  Google Scholar 

  2. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128:669–81.

    Article  PubMed  CAS  Google Scholar 

  3. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54.

    Article  PubMed  CAS  Google Scholar 

  4. Baccarelli A, Ghosh S. Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2012;15:323–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Baccarelli A, Rienstra M, Benjamin EJ. Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet. 2010;3:567–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383:1990–8.

    Article  PubMed  CAS  Google Scholar 

  7. Joehanes R, Just AC, Marioni RE, Pilling LC, Reynolds LM, Mandaviya PR, et al. Epigenetic signatures of cigarette smoking. Circ Cardiovasc Genet. 2016;9:436–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98:680–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ligthart S, Marzi C, Aslibekyan S, Mendelson MM, Conneely KN, Tanaka T, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol. 2016;17:255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. • Relton CL, Davey Smith G. Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease. Int J Epidemiol. Oxford University Press; 2012;41:161–76. This paper explains the rationale, methodology, advantages and limitations of the two-step Mendelian randomization technique.

  11. Stock JH, Trebbi F. Retrospectives who invented instrumental variable regression? J Econ Perspect. 2003;17:177–94.

    Article  Google Scholar 

  12. Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32:1–22.

    Article  PubMed  Google Scholar 

  13. Mendel G, Bateson W. Experiments in plant-hybridisation. Cambridge: Harvard University Press; 1938.

    Google Scholar 

  14. Davey Smith G, Lawlor DA, Harbord R, Timpson N, Rumley A, Lowe GD, et al. Association of C-reactive protein with blood pressure and hypertension: life course confounding and Mendelian randomization tests of causality. Arter Thromb Vasc Biol. 2005;25:1051–6.

    Article  CAS  Google Scholar 

  15. Ding EL, Song Y, Manson JE, Hunter DJ, Lee CC, Rifai N, et al. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N Engl J Med. 2009;361:1152–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. JAMA. 2009;301:2331–9.

    Article  PubMed  CAS  Google Scholar 

  17. Keavney B, Danesh J, Parish S, Palmer A, Clark S, Youngman L, et al. Fibrinogen and coronary heart disease: test of causality by “Mendelian randomization”. Int J Epidemiol. 2006;35:935–43.

    Article  PubMed  Google Scholar 

  18. Larsson SC, Burgess S, Michaelsson K. Association of genetic variants related to serum calcium levels with coronary artery disease and myocardial infarction. JAMA. 2017;318:371–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liao JK. Genetically elevated C-reactive protein and ischemic vascular disease. Curr Atheroscler Rep. 2009;11:245.

    Article  PubMed  Google Scholar 

  20. Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB. Obesity and multiple sclerosis: a Mendelian randomization study. PLoS Med. 2016;13:e1002053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Timpson NJ, Lawlor DA, Harbord RM, Gaunt TR, Day IN, Palmer LJ, et al. C-reactive protein and its role in metabolic syndrome: mendelian randomisation study. Lancet. 2005;366:1954–9.

    Article  PubMed  CAS  Google Scholar 

  22. Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med. 2008;359:1897–908.

    Article  PubMed  CAS  Google Scholar 

  23. Casas JP, Shah T, Cooper J, Hawe E, McMahon AD, Gaffney D, et al. Insight into the nature of the CRP-coronary event association using Mendelian randomization. Int J Epidemiol. 2006;35:922–31.

    Article  PubMed  Google Scholar 

  24. Zhong J, Agha G, Baccarelli AA. The role of DNA methylation in cardiovascular risk and disease: methodological aspects, study design, and data analysis for epidemiological studies. Circ Res. 2016;118:119–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M, et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics. 2011;6:692–702.

    Article  PubMed  CAS  Google Scholar 

  26. Binder AM, Michels KB. The causal effect of red blood cell folate on genome-wide methylation in cord blood: a Mendelian randomization approach. BMC Bioinformatics. 2013;14:353.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell. 2016;167:1415–1429.e19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lu AT, Xue L, Salfati EL, Chen BH, Ferrucci L, Levy D, et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat Commun. 2018;9:387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. •• Caramaschi D, Sharp GC, Nohr EA, Berryman K, Lewis SJ, Davey Smith G, et al. Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child’s IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study. Hum Mol Genet. 2017;26:3001–13 This well-conducted prospective two-step Mendelian randomization study found that DNA methylation can have a role as mediator in the causal relationship between maternal B12 levels and offspring intelligence at the age of 8. This study is an example of a two-step Mendelian randomization study in which each step is conducted under the 2-sample scenario.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Morales E, Vilahur N, Salas LA, Motta V, Fernandez MF, Murcia M, et al. Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy. Int J Epidemiol. 2016;45:1644–55.

    Article  PubMed  Google Scholar 

  31. •• Jhun MA, Smith JA, Ware EB, Kardia SLR, Mosley TH, Turner ST, et al. Modeling the causal role of DNA methylation in the association between cigarette smoking and inflammation in African Americans: a 2-step epigenetic Mendelian randomization study. Am J Epidemiol. 2017;186:1149–58 This well-conducted two-step Mendelian randomization study evaluated the mediator role of DNA methylation changes in the causal association between cigarette smoking and several inflammation markers. They found that smoking decreased methylation levels in F2RL3 and GPR15 , which resulted in increased serum IL-18 levels.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Allard C, Desgagné V, Patenaude J, Lacroix M, Guillemette L, Battista MC, et al. Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics. 2015;10:342–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Longnecker MP, Berlin JA, Orza MJ, Chalmers TC. A meta-analysis of alcohol consumption in relation to risk of breast cancer. JAMA. 1988;260:652–6.

    Article  PubMed  CAS  Google Scholar 

  34. Boef AGC, Dekkers OM, Le Cessie S, De U, User V. Mendelian randomization methodology Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol. 2015;44:496–511.

    Article  PubMed  Google Scholar 

  35. Richmond RC, Sharp GC, Ward ME, Fraser A, Lyttleton O, McArdle WL, et al. DNA methylation and BMI: investigating identified methylation sites at HIF3A in a causal framework. Diabetes. 2016;65:1231–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Richardson TG, Zheng J, Davey Smith G, Timpson NJ, Gaunt TR, Relton CL, et al. Mendelian randomization analysis identifies CpG sites as putative mediators for genetic influences on cardiovascular disease risk. Am J Hum Genet. 2017;101:590–602.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Arathimos R, Suderman M, Sharp GC, Burrows K, Granell R, Tilling K, et al. Epigenome-wide association study of asthma and wheeze in childhood and adolescence. Clin Epigenetics. 2017;9:112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nano J, Ghanbari M, Wang W, de Vries PS, Dhana K, Muka T, et al. Epigenome-wide association study identifies methylation sites associated with liver enzymes and hepatic steatosis. Gastroenterology. 2017;153:1096–1106.e2.

    Article  PubMed  CAS  Google Scholar 

  39. Dekkers KF, van Iterson M, Slieker RC, Moed MH, Bonder MJ, van Galen M, et al. Blood lipids influence DNA methylation in circulating cells. Genome Biol. 2016;17:138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Richard MA, Huan T, Ligthart S, Gondalia R, Jhun MA, Brody JA, et al. DNA methylation analysis identifies loci for blood pressure regulation. Am J Hum Genet. 2017;101:888–902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. • Mendelson MM, Marioni RE, Joehanes R, Liu C, Hedman ÅK, Aslibekyan S, et al. Association of body mass index with DNA methylation and gene expression in blood cells and relations to cardiometabolic disease: a Mendelian randomization approach. Lewis C, editor. PLoS Med. 2017;14:e1002215. This well-conducted study evaluated the causal relationship between DNA methylation levels and body mass index using a bidirectional two-sample Mendelian randomization approach. They found that increased DNA methylation levels at the region of SREBF1 were causally associated with decreased BMI. In addition, they showed that BMI is also a cause of DNA methylation changes in other CpG sites.

  42. Hannon E, Weedon M, Bray N, O’Donovan M, Mill J. Pleiotropic effects of trait-associated genetic variation on DNA methylation: utility for refining GWAS loci. Am J Hum Genet. 2017;100:954–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Gao Y, Wang BQ, Gao WJ, Cao WH, Yu CQ, Lyu J, et al. Mendelian randomization analysis of the relationship between obesity and DNA methylation. Zhonghua Yu Fang Yi Xue Za Zhi. 2017;51:137–42.

    PubMed  CAS  Google Scholar 

  44. Truong V, Huang S, Dennis J, Lemire M, Zwingerman N, Aïssi D, et al. Blood triglyceride levels are associated with DNA methylation at the serine metabolism gene PHGDH. Sci Rep. 2017;7:11207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. •• Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541:81–6 This well-conducted study evaluated the causal relationship between DNA methylation levels and body mass index using a bidirectional Mendelian randomization design. The authors concluded that alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause.

    Article  PubMed  CAS  Google Scholar 

  46. Relton CL, Davey SG. Mendelian randomization: applications and limitations in epigenetic studies. Epigenomics. 2015;7:1239–43.

    Article  PubMed  CAS  Google Scholar 

  47. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet Oxford University Press. 2014;23:R89–98.

    Article  CAS  Google Scholar 

  48. Vanderweele TJ, Tchetgen EJT, Kraft P. Methodological challenges in Mendelian randomization. Epidemiology. 2015;25:427–35.

    Article  Google Scholar 

  49. Staiger D, Stock JH. Instrumental variables regression with weak instruments. Econometrica. The Econometric Society; 1997;65:557.

  50. Stock J, Yogo M. Testing for weak instruments in linear IV regression. In: Andrews DWK, editor. Identification and inference for econometric model. New York: Cambridge University Press; 2005. p. 80–108.

    Chapter  Google Scholar 

  51. Zheng J, Baird D, Borges M-C, Bowden J, Hemani G, Haycock P, et al. Recent developments in Mendelian randomization studies. Curr Epidemiol Rep. 2017;4:330–45.

    Article  PubMed  PubMed Central  Google Scholar 

  52. • Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2017;26:2333–55 This review explains and compares the methodology, advantages and limitations of several approaches for instrumental variable estimation. It also provides techniques for obtaining confidence intervals of the causal estimators and a guide for dealing with weak instruments.

    Article  PubMed  Google Scholar 

  53. Paaby AB, Rockman MV. The many faces of pleiotropy. Trends Genet NIH Public Access. 2013;29:66–73.

    Article  CAS  Google Scholar 

  54. Ferreira MAR, Purcell SM. A multivariate test of association. Bioinformatics. 2009;25:132–3.

    Article  PubMed  CAS  Google Scholar 

  55. Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14:483–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Schaid DJ, Tong X, Larrabee B, Kennedy RB, Poland GA, Sinnwell JP. Statistical methods for testing genetic pleiotropy. Genetics. 2016;204:483–97.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hellwege JN, Keaton JM, Giri A, Gao X, Velez Edwards DR, Edwards TL. Population stratification in genetic association studies. Curr Protoc Hum Genet. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2017. p. 1.22.1–1.22.23.

  58. Price AL, Zaitlen NA, Reich D, Patterson N. New approaches to population stratification in genome-wide association studies. Nat Rev Genet NIH Public Access; 2010;11:459–63.

  59. Li M, Reilly MP, Rader DJ, Wang L-S. Correcting population stratification in genetic association studies using a phylogenetic approach. Bioinformatics Oxford University Press; 2010;26:798–806.

  60. Shah S, McRae AF, Marioni RE, Harris SE, Gibson J, Henders AK, et al. Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res. 2014;24:1725–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15:R31.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010;11:733–9.

    Article  PubMed  CAS  Google Scholar 

  64. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Lamas GA, Navas-Acien A, Mark DB, Lee KL. Heavy metals, cardiovascular disease, and the unexpected benefits of edetate chelation therapy. J Am Coll Cardiol. 2016;67:2411–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. Liu J, editor. PLoS One. 2010;5:e8888.

  67. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science. 2012;336:934–7.

    Article  PubMed  CAS  Google Scholar 

  68. Lange T, Rasmussen M, Thygesen LC. Assessing natural direct and indirect effects through multiple pathways. Am J Epidemiol. 2014;179:513–8.

    Article  PubMed  Google Scholar 

  69. Tobi EW, Slieker RC, Luijk R, Dekkers KF, Stein AD, Xu KM, et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci Adv. American Association for the Advancement of Science; 2018;4:eaao4364.

  70. Tobi EW, van Zwet EW, Lumey L, Heijmans BT. Why mediation analysis trumps Mendelian randomization in population epigenomics studies of the Dutch Famine. bioRxiv. 2018;362392.

  71. Richmond RC, Relton CL, Smith GD. RE: what evidence is required to suggest that DNA methylation mediates the association between prenatal famine exposure and adulthood disease? Sci Adv. 2018

Download references

Acknowledgments

M.G.P. was supported by the AstraZeneca Foundation, Spain (“III Premio Jóvenes Investigadores, Programa de Fomento de los Jóvenes Científicos Españoles,” Principal Investigator: M.T.P.). The findings and conclusions in this article are those of the authors and do not necessarily reflect the views of the Carlos III Health Institutes, Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grau-Perez.

Ethics declarations

Conflict of Interest

Maria Grau-Perez, Golareh Agha, Yuanjie Pang, José Bermudez, and Maria Tellez-Plaza declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Environmental Epigenetics

Electronic supplementary material

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grau-Perez, M., Agha, G., Pang, Y. et al. Mendelian Randomization and the Environmental Epigenetics of Health: a Systematic Review. Curr Envir Health Rpt 6, 38–51 (2019). https://doi.org/10.1007/s40572-019-0226-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-019-0226-3

Keywords

Navigation