Skip to main content

Advertisement

Log in

Recent Research Examining Links Among Klebsiella pneumoniae from Food, Food Animals, and Human Extraintestinal Infections

  • Food, Health, and the Environment (KE Nachman, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae is a colonizer of livestock, a contaminant of retail meats and vegetables, and a cause of extraintestinal infections in humans. Antibiotic-resistant strains of K. pneumoniae are becoming increasingly prevalent among hospital and community-acquired infections. Antibiotics are used extensively in conventional food-animal production, where they select for antibiotic-resistant bacteria. Antibiotic-resistant K. pneumoniae has been isolated from livestock as well as from a variety of retail meats, seafood, and vegetables. Furthermore, recent phylogenetic analyses suggest close relationships between K. pneumoniae from humans and livestock. Therefore, it is essential that we quantify the contribution of foodborne K. pneumoniae to antibiotic-resistant human infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance

  1. Brisse S, Fevre C, Passet V, et al. Virulent clones of Klebsiella pneumoniae: identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One. 2009;4(3):e4982.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bagley ST. Habitat association of Klebsiella species. Infect Control IC. 1985;6(2):52–8.

    CAS  PubMed  Google Scholar 

  4. Duncan DW, Razzell WE. Klebsiella biotypes among coliforms isolated from forest environments and farm produce. Appl Microbiol. 1972;24(6):933–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong SH, Cullimore DR, Bruce DL. Selective medium for the isolation and enumeration of Klebsiella spp. Appl Environ Microbiol. 1985;49(4):1022–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Seidler RJ, Knittel MD, Brown C. Potential pathogens in the environment: cultural reactions and nucleic acid studies on Klebsiella pneumoniae from clinical and environmental sources. Appl Microbiol. 1975;29(6):819–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gabida M, Gombe NT, Chemhuru M, et al. Foodborne illness among factory workers, Gweru, Zimbabwe, 2012: a retrospective cohort study. BMC Res Notes. 2015;8:493.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hatheway CL, Farmer 3rd JJ. Clostridium perfringens or Klebsiella pneumoniae as the cause of a food-borne outbreak. J Clin Microbiol. 1991;29(2):415–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rennie RP, Anderson CM, Wensley BG, et al. Klebsiella pneumoniae gastroenteritis masked by Clostridium perfringens. J Clin Microbiol. 1990;28(2):216–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Laupland KB, Ross T, Pitout JD, et al. Community-onset urinary tract infections: a population-based assessment. Infection. 2007;35(3):150–3.

    Article  CAS  PubMed  Google Scholar 

  11. Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013;4(2):107–18.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Du Y, Luo J, Wang C, et al. Detection of drug-resistant Klebsiella pneumoniae in Chinese hares (Lepus sinensis). J Wildl Dis. 2014;50(1):109–12.

    Article  CAS  PubMed  Google Scholar 

  13. Brisse S, Duijkeren E. Identification and antimicrobial susceptibility of 100 Klebsiella animal clinical isolates. Vet Microbiol. 2005;105(3–4):307–12.

    Article  CAS  PubMed  Google Scholar 

  14. Timofte D, Maciuca IE, Evans NJ, et al. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 beta-lactamases from bovine mastitis isolates in the United Kingdom. Antimicrob Agents Chemother. 2014;58(2):789–94.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zadoks RN, Middleton JR, McDougall S, et al. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J Mammary Gland Biol Neoplasia. 2011;16(4):357–72.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Botrel MA, Haenni M, Morignat E, et al. Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhone-Alpes, France. Foodborne Pathog Dis. 2010;7(5):479–87.

    Article  CAS  PubMed  Google Scholar 

  17. Sanchez GV, Master RN, Clark RB, et al. Klebsiella pneumoniae antimicrobial drug resistance, United States, 1998–2010. Emerg Infect Dis. 2013;19(1):133–6.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Logan LK, Braykov NP, Weinstein RA, et al. Extended-spectrum beta-lactamase-producing and third-generation cephalosporin-resistant enterobacteriaceae in children: trends in the United States, 1999–2011. J Pediatric Infect Dis Soc. 2014;3(4):320–8.

    Article  PubMed  Google Scholar 

  19. Martelius T, Jalava J, Karki T, et al. Nosocomial bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae resistant to third-generation cephalosporins, Finland, 1999–2013: trends, patient characteristics and mortality. Infect Dis (Lond). 2016;48(3):229–34.

    Article  Google Scholar 

  20. Guerra B, Fischer J, Helmuth R. An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds. Vet Microbiol. 2014;171(3–4):290–7.

    Article  PubMed  Google Scholar 

  21. Tadesse DA, Zhao S, Tong E, et al. Antimicrobial drug resistance in Escherichia coli from humans and food animals, United States, 1950–2002. Emerg Infect Dis. 2012;18(5):741–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brisse S, Grimont F, Grimont P. The genus Klebsiella. In: Dworkin MS, Falkow S, Rosenberg E, Schleifer K-H, Stackenbrandt E, editors. The prokaryotes—a handbook on the biology of bacteria. 6. 3rd ed. New York: Springer; 2006.

    Google Scholar 

  23. Brisse S, Passet V, Grimont PA. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola. Int J Syst Evol Microbiol. 2014;64(Pt 9):3146–52.

    Article  PubMed  Google Scholar 

  24. Rosenblueth M, Martinez L, Silva J, et al. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Syst Appl Microbiol. 2004;27(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  25. Brisse S, Verhoef J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol. 2001;51(Pt 3):915–24.

    Article  CAS  PubMed  Google Scholar 

  26. Brisse S, van Himbergen T, Kusters K, et al. Development of a rapid identification method for Klebsiella pneumoniae phylogenetic groups and analysis of 420 clinical isolates. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2004;10(10):942–5.

    CAS  Google Scholar 

  27. Maatallah M, Vading M, Kabir MH, et al. Klebsiella variicola is a frequent cause of bloodstream infection in the Stockholm area, and associated with higher mortality compared to K. pneumoniae. PLoS One. 2014;9(11):e113539.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Berry GJ, Loeffelholz MJ, Williams-Bouyer N. An investigation into laboratory misidentification of a bloodstream Klebsiella variicola infection. J Clin Microbiol. 2015;53(8):2793–4.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Garza-Ramos U, Moreno-Dominguez S, Hernandez-Castro R, et al. Identification and characterization of imipenem-resistant Klebsiella pneumoniae and susceptible Klebsiella variicola isolates obtained from the same patient. Microb Drug Resist. 2015.

  30. Davis GS, Waits K, Nordstrom L, et al. Intermingled Klebsiella pneumoniae populations between retail meats and human urinary tract infections. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;61(6):892–9. Using whole-genome DNA sequencing, this study showed closed phylogenetic relationships between foodborne K. pneumoniae isolated from retail meats (chicken, turkey, and pork) and human urinary tract infections.

    Article  Google Scholar 

  31. Zurfluh K, Poirel L, Nordmann P, et al. First detection of Klebsiella variicola producing OXA-181 carbapenemase in fresh vegetable imported from Asia to Switzerland. Antimicrob Resistance Infect Control. 2015;4:38.

    Article  CAS  Google Scholar 

  32. Chen L, Mathema B, Chavda KD, et al. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol. 2014;22(12):686–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Snitkin ES, Zelazny AM, Thomas PJ, et al. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med. 2012;4(148):148ra116.

    PubMed  PubMed Central  Google Scholar 

  34. Struve C, Roe CC, Stegger M, et al. Mapping the evolution of hypervirulent Klebsiella pneumoniae. mBio. 2015;6(4).

  35. Chung DR, Lee HR, Lee SS, et al. Evidence for clonal dissemination of the serotype K1 Klebsiella pneumoniae strain causing invasive liver abscesses in Korea. J Clin Microbiol. 2008;46(12):4061–3.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liao CH, Huang YT, Chang CY, et al. Capsular serotypes and multilocus sequence types of bacteremic Klebsiella pneumoniae isolates associated with different types of infections. Eur J Clin Microbiol Infect Dis. 2014;33(3):365–9.

    Article  CAS  PubMed  Google Scholar 

  37. Luo Y, Wang Y, Ye L, et al. Molecular epidemiology and virulence factors of pyogenic liver abscess causing Klebsiella pneumoniae in China. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2014;20(11):O818–24.

    CAS  Google Scholar 

  38. Siu LK, Fung CP, Chang FY, et al. Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan. J Clin Microbiol. 2011;49(11):3761–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turton JF, Englender H, Gabriel SN, et al. Genetically similar isolates of Klebsiella pneumoniae serotype K1 causing liver abscesses in three continents. J Med Microbiol. 2007;56(Pt 5):593–7.

    Article  CAS  PubMed  Google Scholar 

  40. Li W, Sun G, Yu Y, et al. Increasing occurrence of antimicrobial-resistant hypervirulent (hypermucoviscous) Klebsiella pneumoniae isolates in China. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;58(2):225–32.

    Article  CAS  Google Scholar 

  41. Holt KE, Wertheim H, Zadoks RN, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015;112(27):E3574–81. This study provides a thorough genomic analysis of a large K. pneumoniae isolate collection containing clinical and colonizing isolates of human and animal origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Su SC, Siu LK, Ma L, et al. Community-acquired liver abscess caused by serotype K1 Klebsiella pneumoniae with CTX-M-15-type extended-spectrum beta-lactamase. Antimicrob Agents Chemother. 2008;52(2):804–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cejas D, Fernandez Canigia L, Rincon Cruz G, et al. First isolate of KPC-2-producing Klebsiella pneumoniae sequence type 23 from the Americas. J Clin Microbiol. 2014;52(9):3483–5.

    Article  PubMed  PubMed Central  Google Scholar 

  44. FDA. 2014 Summary report on antimicrobials sold or distributed for use in food-producing animals. Food and Drug Administration. December, 2015. Available from: http://www.fda.gov/ForIndustry/UserFees/AnimalDrugUserFeeActADUFA/ucm042896.htm.

  45. NARMS. 2012 Retail meat report. National Antimicrobial Resistance Monitoring System. Food and Drug Administration. 2012. Available from: http://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/ucm059103.htm.

  46. CDC. National Antimicrobial Resistance Monitoring System (NARMS): Enteric Bacteria 2013 Human Isolates Final Report. Centers for Disease Control and Prevention. 2015. Available from: http://www.cdc.gov/narms/.

  47. McEwen SA, Fedorka-Cray PJ. Antimicrobial use and resistance in animals. Clin Infect Dis Off Publ Infect Dis Soc Am. 2002;34 Suppl 3:S93–106.

    Article  CAS  Google Scholar 

  48. Ibenyassine K, Mhand RA, Karamoko Y, et al. Bacterial pathogens recovered from vegetables irrigated by wastewater in Morocco. J Environ Health. 2007;69(10):47–51.

    CAS  PubMed  Google Scholar 

  49. Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112(18):5649–54.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Falagas ME, Karageorgopoulos DE, Nordmann P. Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol. 2011;6(6):653–66.

    Article  CAS  PubMed  Google Scholar 

  51. Catry B, Cavaleri M, Baptiste K, et al. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents. 2015;46(3):297–306.

    Article  CAS  PubMed  Google Scholar 

  52. Carrique-Mas JJ, Trung NV, Hoa NT, et al. Antimicrobial usage in chicken production in the Mekong Delta of Vietnam. Zoonoses Publ Health. 2015;62 Suppl 1:70–8.

    Article  CAS  Google Scholar 

  53. Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2015. This was the first study to identify plasmid-mediated colistin resistance, demonstrating its presence in livestock-, food-, and human-associated E. coli strains.

  54. Hasman H, Hammerum AM, Hansen F, et al. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill. 2015;20(49).

  55. Olaitan AO, Chabou S, Okdah L, et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis. 2015.

  56. Olaitan AO, Thongmalayvong B, Akkhavong K, et al. Clonal transmission of a colistin-resistant Escherichia coli from a domesticated pig to a human in Laos. J Antimicrob Chemother. 2015;70(12):3402–4.

    PubMed  Google Scholar 

  57. Webb HE, Granier SA, Marault M, et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis. 2015.

  58. Brodka K, Kozajda A, Buczynska A, et al. The variability of bacterial aerosol in poultry houses depending on selected factors. Int J Occup Med Environ Health. 2012;25(3):281–93.

    Article  PubMed  Google Scholar 

  59. Garcia-Cobos S, Kock R, Mellmann A, et al. Molecular typing of Enterobacteriaceae from pig holdings in North-Western Germany reveals extended-spectrum and AmpC beta-lactamases producing but no carbapenem resistant ones. PLoS One. 2015;10(7):e0134533.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kim SH, Wei CI, Tzou YM, et al. Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma. J Food Prot. 2005;68(10):2022–9.

    CAS  PubMed  Google Scholar 

  61. Hiroi M, Yamazaki F, Harada T, et al. Prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in food-producing animals. J Vet Med Sci. 2012;74(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  62. Ohnishi M, Okatani AT, Esaki H, et al. Herd prevalence of Enterobacteriaceae producing CTX-M-type and CMY-2 beta-lactamases among Japanese dairy farms. J Appl Microbiol. 2013;115(1):282–9.

    Article  CAS  PubMed  Google Scholar 

  63. Yue L, Chen X, Li S, et al. First report of plasmid-mediated quinolone resistance qnrA1 gene in Klebsiella pneumoniae isolate of animal origin. Foodborne Pathog Dis. 2011;8(4):565–8.

    Article  CAS  PubMed  Google Scholar 

  64. Stiles ME, Ng LK. Enterobacteriaceae associated with meats and meat handling. Appl Environ Microbiol. 1981;41(4):867–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fischer J, Hille K, Mellmann A, et al. Low-level antimicrobial resistance of Enterobacteriaceae isolated from the nares of pig-exposed persons. Epidemiol Infect. 2015;1–5.

  66. Price LB, Graham JP, Lackey LG, et al. Elevated risk of carrying gentamicin-resistant Escherichia coli among U.S. poultry workers. Environ Health Perspect. 2007;115(12):1738–42.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Osman KM, Hassan HM, Orabi A, et al. Phenotypic, antimicrobial susceptibility profile and virulence factors of Klebsiella pneumoniae isolated from buffalo and cow mastitic milk. Pathog Glob Health. 2014;108(4):191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bhatt VD, Ahir VB, Koringa PG, et al. Milk microbiome signatures of subclinical mastitis-affected cattle analysed by shotgun sequencing. J Appl Microbiol. 2012;112(4):639–50.

    Article  CAS  PubMed  Google Scholar 

  69. Contreras GA, Rodriguez JM. Mastitis: comparative etiology and epidemiology. J Mammary Gland Biol Neoplasia. 2011;16(4):339–56.

    Article  PubMed  Google Scholar 

  70. Locatelli C, Scaccabarozzi L, Pisoni G, et al. CTX-M1 ESBL-producing Klebsiella pneumoniae subsp. pneumoniae isolated from cases of bovine mastitis. J Clin Microbiol. 2010;48(10):3822–3.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sudarwanto M, Akineden O, Odenthal S, et al. Extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae in bulk tank milk from dairy farms in Indonesia. Foodborne Pathog Dis. 2015;12(7):585–90.

    Article  PubMed  Google Scholar 

  72. USDA. Livestock & Meat Domestic Data 2015 [cited 2015 Feburary 4]. Available from: http://www.ers.usda.gov/data-products/livestock-meat-domestic-data.aspx-26063.

  73. Gundogan N, Citak S, Yalcin E. Virulence properties of extended spectrum beta-lactamase-producing Klebsiella species in meat samples. J Food Prot. 2011;74(4):559–64.

    Article  PubMed  Google Scholar 

  74. Shahid M, Malik A, Adil M, et al. Comparison of beta-lactamase genes in clinical and food bacterial isolates in India. J Infect Dev Ctries. 2009;3(8):593–8.

    Article  CAS  PubMed  Google Scholar 

  75. Kilonzo-Nthenge A, Rotich E, Nahashon SN. Evaluation of drug-resistant Enterobacteriaceae in retail poultry and beef. Poult Sci. 2013;92(4):1098–107.

    Article  CAS  PubMed  Google Scholar 

  76. Casella T, Rodriguez MM, Takahashi JT, et al. Detection of blaCTX-M-type genes in complex class 1 integrons carried by Enterobacteriaceae isolated from retail chicken meat in Brazil. Int J Food Microbiol. 2015;197:88–91.

    Article  CAS  PubMed  Google Scholar 

  77. Wu H, Liu BG, Liu JH, et al. Phenotypic and molecular characterization of CTX-M-14 extended-spectrum beta-lactamase and plasmid-mediated ACT-like AmpC beta-lactamase produced by Klebsiella pneumoniae isolates from chickens in Henan Province. China Genet Mol Res. 2012;11(3):3357–64.

    Article  CAS  PubMed  Google Scholar 

  78. Overdevest IT, Heck M, van der Zwaluw K, et al. Extended-spectrum beta-lactamase producing Klebsiella spp. in chicken meat and humans: a comparison of typing methods. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2014;20(3):251–5.

    CAS  Google Scholar 

  79. Singh BR, Kulshreshtha SB. Preliminary examinations on the enterotoxigenicity of isolates of Klebsiella pneumoniae from seafoods. Int J Food Microbiol. 1992;16(4):349–52.

    Article  CAS  PubMed  Google Scholar 

  80. Nawaz M, Khan SA, Tran Q, et al. Isolation and characterization of multidrug-resistant Klebsiella spp. isolated from shrimp imported from Thailand. Int J Food Microbiol. 2012;155(3):179–84.

    Article  CAS  PubMed  Google Scholar 

  81. Boehme S, Werner G, Klare I, et al. Occurrence of antibiotic-resistant enterobacteria in agricultural foodstuffs. Mol Nutr Food Res. 2004;48(7):522–31.

    Article  CAS  PubMed  Google Scholar 

  82. Kim HS, Chon JW, Kim YJ, et al. Prevalence and characterization of extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in ready-to-eat vegetables. Int J Food Microbiol. 2015;207:83–6.

    Article  CAS  PubMed  Google Scholar 

  83. Bhutani N, Muraleedharan C, Talreja D, et al. Occurrence of multidrug resistant extended spectrum beta-lactamase-producing bacteria on iceberg lettuce retailed for human consumption. Biomed Res Int. 2015;2015:547547.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Falomir MP, Rico H, Gozalbo D. Enterobacter and Klebsiella species isolated from fresh vegetables marketed in Valencia (Spain) and their clinically relevant resistances to chemotherapeutic agents. Foodborne Pathog Dis. 2013;10(12):1002–7.

    Article  CAS  PubMed  Google Scholar 

  85. Zurfluh K, Nuesch-Inderbinen M, Morach M, et al. Extended-spectrum-beta-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam. Appl Environ Microbiol. 2015;81(9):3115–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Calbo E, Freixas N, Xercavins M, et al. Foodborne nosocomial outbreak of SHV1 and CTX-M-15-producing Klebsiella pneumoniae: epidemiology and control. Clin Infect Dis Off Publ Infect Dis Soc Am. 2011;52(6):743–9.

    Article  Google Scholar 

  87. Tschudin-Sutter S, Frei R, Stephan R, et al. Extended-spectrum beta-lactamase (ESBL)-producing enterobacteriaceae: a threat from the kitchen. Infect Control Hosp Epidemiol Off J Soc Hosp Epidemiol Am. 2014;35(5):581–4.

    Article  Google Scholar 

  88. Depoorter P, Persoons D, Uyttendaele M, et al. Assessment of human exposure to 3rd generation cephalosporin resistant E. coli (CREC) through consumption of broiler meat in Belgium. Int J Food Microbiol. 2012;159(1):30–8.

    Article  CAS  PubMed  Google Scholar 

  89. Perez KL, Lucia LM, Cisneros-Zevallos L, et al. Efficacy of antimicrobials for the disinfection of pathogen contaminated green bell pepper and of consumer cleaning methods for the decontamination of knives. Int J Food Microbiol. 2012;156(1):76–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregg S. Davis.

Ethics declarations

Conflict of Interest

Gregg Davis and Lance Price declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Food, Health, and the Environment; Production

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, G.S., Price, L.B. Recent Research Examining Links Among Klebsiella pneumoniae from Food, Food Animals, and Human Extraintestinal Infections. Curr Envir Health Rpt 3, 128–135 (2016). https://doi.org/10.1007/s40572-016-0089-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-016-0089-9

Keywords

Navigation