Skip to main content

Advertisement

Log in

Emerging biomarkers and screening for cognitive frailty

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Physical frailty and cognitive frailty are two important targets of secondary intervention in aging research to narrow the gap between life and health span. The objective of the present narrative review was to examine clinical and epidemiological studies investigating the recently proposed construct of cognitive frailty and its subtypes, with a focus on operational definitions, clinical criteria, and emerging biomarkers potentially useful for the screening of this novel entity. Both physical frailty and frailty indexes with a multidimensional nature were associated with late-life cognitive impairment/decline, incident dementia, Alzheimer’s disease (AD), mild cognitive impairment, vascular dementia, non-AD dementias, and AD pathology proposing cognitive frailty as a clinical entity with cognitive impairment related to physical causes with a potential reversibility. The new clinical and research AD criteria established by the National Institute on Aging–Alzheimer’s Association and the American Psychiatric Association could improve the differential diagnosis of cognitive impairment within the cognitive frailty construct. The emerging biomarkers of sarcopenia, physical frailty, and cognitive impairment will provide the basis to establish more reliable clinical and research criteria for cognitive frailty, using different operational definitions for frailty and cognitive impairment and useful clinical, biological, and imaging markers for this novel clinical construct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Clegg A, Young J, Iliffe S et al (2013) Frailty in elderly people. Lancet 381:752–762. doi:10.1016/S0140-6736(12)62167-9

    Article  PubMed  Google Scholar 

  2. Ruan Q, Yu Z, Chen M et al (2015) Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res Rev 20:1–10. doi:10.1016/j.arr.2014.12.004

    Article  PubMed  Google Scholar 

  3. Panza F, Seripa D, Solfrizzi V et al (2015) Targeting cognitive frailty: clinical and neurobiological roadmap for a single complex phenotype. J Alzheimers Dis 47:793–813. doi:10.3233/JAD-150358

    Article  PubMed  Google Scholar 

  4. Panza F, D’Introno A, Colacicco AM et al (2006) Cognitive frailty: predementia syndrome and vascular risk factors. Neurobiol Aging 27:933–940. doi:10.1016/j.neurobiolaging.2005.05.008

    Article  CAS  PubMed  Google Scholar 

  5. Kelaiditi E, Cesari M, Canevelli M et al (2013) Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr Health Aging 17:726–734. doi:10.1007/s12603-013-0367-2

    Article  CAS  PubMed  Google Scholar 

  6. Morley JE, Vellas B, van Kan GA et al (2013) Frailty consensus: a call to action. J Am Med Dir Assoc 14:392–397. doi:10.1016/j.jamda.2013.03.022

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jessen F, Amariglio RE, van Boxtel M et al (2014) A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 10:844–852. doi:10.1016/j.jalz.2014.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders. 5th Edn. American Psychiatric Association, Arlington

    Book  Google Scholar 

  9. Tay L, Lim WS, Chan M et al (2015) New DSM-V neurocognitive disorders criteria and their impact on diagnostic classifications of mild cognitive impairment and dementia in a memory clinic setting. Am J Geriatr Psychiatry 23:768–779. doi:10.1016/j.jagp.2015.01.004

    Article  PubMed  Google Scholar 

  10. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. doi:10.1016/j.jalz.2011.03.008

    Article  PubMed  PubMed Central  Google Scholar 

  11. Geerlings MI, Jonker C, Bouter LM et al (1999) Association between memory complaints and incident Alzheimer’s disease in elderly people with normal baseline cognition. Am J Psychiatry 156:531–537

    CAS  PubMed  Google Scholar 

  12. Wolfsgruber S, Jessen F, Koppara A et al (2015) Subjective cognitive decline is related to CSF biomarkers of AD in patients with MCI. Neurology 84:1261–1268. doi:10.1212/WNL.0000000000001399

    Article  CAS  PubMed  Google Scholar 

  13. Walsh SP, Raman R, Jones KB et al (2006) ADCS prevention instrument project: the mail-in cognitive function screening instrument (MCFSI). Alzheimer Dis Assoc Disord 20(4 Suppl 3):S170–S178. doi:10.1097/01.wad.0000213879.55547.57.

    Article  PubMed  Google Scholar 

  14. Amariglio RE, Donohue MC, Marshall GA et al (2015) Tracking early decline in cognitive function in older individuals at risk for Alzheimer disease dementia: the Alzheimer’s Disease cooperative study cognitive function instrument. JAMA Neurol 72:446–454. doi:10.1001/jamaneurol.2014.3375

    Article  PubMed  PubMed Central  Google Scholar 

  15. Caselli RJ, Chen K, Locke DE et al (2014) Subjective cognitive decline: self and informant comparisons. Alzheimers Dement 10:93–98. doi:10.1016/j.jalz.2013.01.003

    Article  PubMed  Google Scholar 

  16. Malmstrom TK, Voss VB, Cruz-Oliver DM et al (2015) The rapid cognitive screen (RCS): a point-of-care screening for dementia and mild cognitive impairment. J Nutr Health Aging 19:741–744. doi:10.1007/s12603-015-0564-2

    Article  CAS  PubMed  Google Scholar 

  17. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263–269. doi:10.1016/j.jalz.2011.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sperling RA Aisen PS, Beckett LA et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:280–292. doi:10.1016/j.jalz.2011.03.003

    Article  PubMed  Google Scholar 

  19. Robertson DA, Savva GM, Kenny RA (2013) Frailty and cognitive impairment-A review of the evidence and causal mechanisms. Ageing Res Rev 12:840–851. doi:10.1016/j.arr.2013.06.004

    Article  PubMed  Google Scholar 

  20. Panza F, Solfrizzi V, Frisardi V et al (2011) Different models of frailty in predementia and dementia syndromes. J Nutr Health Aging 15:711–719. doi:10.1007/s12603-011-0126-1

    Article  CAS  PubMed  Google Scholar 

  21. Panza F, Solfrizzi V, Barulli MR et al (2015) Cognitive frailty: a systematic review of epidemiological and neurobiological evidence of an age-related clinical condition. Rejuvenation Res 18:389–412. doi:10.1089/rej.2014.1637

    Article  PubMed  Google Scholar 

  22. Kojima G, Taniguchi Y, Iliffe S et al (2016) Frailty as a predictor of Alzheimer disease, vascular dementia, and all dementia among community-dwelling older people: A systematic review and meta-analysis. J Am Med Dir Assoc 17:881–888. doi:10.1016/j.jamda.2016.05.013 1525–8610

    Article  PubMed  Google Scholar 

  23. Giannini M, Solfrizzi V, Panza F et al (2015) Additive role of a cognitive frailty model and inflammatory state on the risk of disability. The Italian Longitudinal Study on Aging. Neurology 84(14 Suppl):S36009

    Google Scholar 

  24. Shimada H, Makizako H, Lee S et al (2016) Impact of cognitive frailty on daily activities in older persons. J Nutr Health Aging 20:729–735. doi:10.1007/s12603-016-0685-2

    Article  CAS  PubMed  Google Scholar 

  25. Roppolo M, Mulasso A, Rabaglietti E (2016) Cognitive frailty in Italian community-dwelling older adults: prevalence rate and its association with disability. J Nutr Health Aging. doi:10.1007/s12603-016-0828-5 (Epub ahead of print)

    Google Scholar 

  26. Feng L, Nyunt MS, Gao Q et al (2016) Physical frailty, cognitive impairment and the risk of dementia in the Singapore Longitudinal Ageing Studies (SLAS). J Gerontol A Biol Sci Med Sci 72:369–375. doi:10.1093/gerona/glw050

    Google Scholar 

  27. Montero-Odasso MM, Barnes B, Speechley M et al (2016) Disentangling cognitive-frailty: results from the Gait and Brain Study. J Gerontol A Biol Sci Med Sci 71:1476–1482. doi:10.1093/gerona/glw044

    Article  PubMed  Google Scholar 

  28. Gill TM, Gahbauer EA, Allore HG et al (2006) Transitions between frailty states among community-living older persons. Arch Intern Med 166:418–423. doi:10.1001/archinte.166.4.418

    Article  PubMed  Google Scholar 

  29. Chong MS, Tay L, Chan M et al (2015) Prospective longitudinal study of frailty transitions in a community-dwelling cohort of older adults with cognitive impairment. BMC Geriatr 15:175. doi:10.1186/s12877-015-0174-1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Solfrizzi V, Scafato E, Seripa D, for the Italian Longitudinal Study on Aging Working Group et al (2017) Reversible cognitive frailty, dementia, and all-cause mortality. The Italian Longitudinal Study on Aging. J Am Med Dir Assoc 18:89.e1–89.e8. doi:10.1016/j.jamda.2016.10.012

    Article  Google Scholar 

  31. Ngandu T, Lehtisalo J, Solomon A et al (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385:2255–2263. doi:10.1016/S0140-6736(15)60461-5

    Article  PubMed  Google Scholar 

  32. Ávila-Funes JA, Amieva H, Barberger-Gateau P et al (2009) Cognitive impairment improves the predictive validity of the phenotype of frailty for adverse health outcomes: the Three-City Study. J Am Geriatr Soc 57:453–461. doi:10.1111/j.1532-5415.2008.02136.x

    Article  PubMed  Google Scholar 

  33. Cano C, Samper-Ternent R, Al Snih S et al (2012) Frailty and cognitive impairment as predictors of mortality in older Mexican Americans. J Nutr Health Aging;16:142–147. doi:10.1007/s12603-011-0104-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Solfrizzi V, Scafato E, Frisardi V et al (2012) Frailty syndrome and all-cause mortality in demented patients: the Italian Longitudinal Study on Aging. Age (Dordr) 34:507–517. doi:10.1007/s11357-011-9247-z

    Article  Google Scholar 

  35. Jessen F, Feyen L, Freymann K et al (2006) Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiol Aging 27:1751–1756. doi:10.1016/j.neurobiolaging.2005.10.010

    Article  PubMed  Google Scholar 

  36. Saykin AJ, Wishart HA, Rabin LA et al (2006) Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology 67:834–842. doi:10.1212/01.wnl.0000234032.77541.a2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Norden AG, Fick WF, de Laat KF et al (2008) Subjective cognitive failures and hippocampal volume in elderly with white matter lesions. Neurology 71:1152–1159. doi:10.1212/01.wnl.0000327564.44819.49

    Article  PubMed  Google Scholar 

  38. Mosconi L, De Santi S, Brys M et al (2008) Hypometabolism and altered cerebrospinal fluid markers in normal apolipoproteinE ε 4 carriers with subjective memory complaints. Biol Psychiatry 63:609–618. doi:10.1016/j.biopsych.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  39. Amariglio RE, Becker JA, Carmasin J et al (2012) Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 50:2880–2886. doi:10.1016/j.neuropsychologia.2012.08.011

    Article  PubMed  PubMed Central  Google Scholar 

  40. Price JL, McKeel DW Jr, Buckles VD et al (2009) Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging 30:1026–1036. doi:10.1016/j.neurobiolaging.2009.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bateman RJ, Xiong C, Benzinger TL et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804. doi:10.1056/NEJMoa1202753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sperling RA, Karlawish J, Johnson KA (2013) Preclinical Alzheimer disease-the challenges ahead. Nat Rev Neurol 9:54–58. doi:10.1038/nrneurol.2012.241

    Article  CAS  PubMed  Google Scholar 

  43. Jack CR Jr, Knopman DS, Weigand SD et al (2012) An operational approach to National Institute on Aging-Alzheimer’s Association criteria for preclinical Alzheimer disease. Ann Neurol 71:765–775. doi:10.1002/ana.22628

    Article  PubMed  PubMed Central  Google Scholar 

  44. Solfrizzi V, Scafato E, Frisardi V, Italian Longitudinal Study on Aging Working Group et al (2013) Frailty syndrome and the risk of vascular dementia: the Italian Longitudinal Study on Aging. Alzheimers Dement 9:113–122. doi:10.1016/j.jalz.2011.09.223

    Article  PubMed  Google Scholar 

  45. Avila-Funes JA, Carcaillon L, Helmer C et al (2012) Is frailty a prodromal stage of vascular dementia? Results from the Three-City Study. J Am Geriatr Soc 60:1708–1712. doi:10.1111/j.1532-5415.2012.04142.x

    Article  PubMed  Google Scholar 

  46. Vos SJ, Xiong C, Visser PJ et al (2013) Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. Lancet Neurol 12:957–965. doi:10.1016/S1474-4422(13)70194-7

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lesné SE, Sherman MA, Grant M et al (2013) Brain amyloid-beta oligomers in ageing and Alzheimer’s disease. Brain 136:1383–1398. doi:10.1093/brain/awt062

    Article  PubMed  PubMed Central  Google Scholar 

  48. Handoko M, Grant M, Kuskowski M et al (2013) Correlation of specific amyloid-β oligomers with tau in cerebrospinal fluid from cognitively normal older adults. JAMA Neurol 70:594–599. doi:10.1001/jamaneurol.2013.48

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jansen WJ, Ossenkoppele R, Knol DL et al (2015) Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA 313:1924–1938. doi:10.1001/jama.2015.4668

    Article  PubMed  PubMed Central  Google Scholar 

  50. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368. doi:10.1002/15318249(199903)45:3<358::AID-ANA12>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  51. Mielke MM, Wiste HJ, Weigand SD et al (2012) Indicators of amyloid burden in a population-based study of cognitively normal elderly. Neurology 79:1570–1577. doi:10.1212/WNL.0b013e31826e2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Vos SJ, Verhey F, Frölich L et al (2015) Prevalence and prognosis of Alzheimer’s disease at the mild cognitive impairment stage. Brain 138:1327–1338. doi:10.1093/brain/awv029

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dubois B, Feldman HH, Jacova C et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6:734–746. doi:10.1016/S1474-4422(07)70178-3

    Article  PubMed  Google Scholar 

  54. Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 13:614–629. doi:10.1016/S1474-4422(14)70090-0

    Article  PubMed  Google Scholar 

  55. Tifratene K, Robert P, Metelkina A et al (2015) Progression of mild cognitive impairment to dementia due to AD in clinical settings. Neurology 85:331–338. doi:10.1212/WNL.0000000000001788

    Article  PubMed  Google Scholar 

  56. Ewers M, Walsh C, Trojanowski JQ et al (2012) Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiol Aging 33:1203–1214. doi:10.1016/j.neurobiolaging.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  57. Chételat G, Eustache F, Viader F et al (2005) FDG-PET measurement is more accurate than neuropsychological assessments to predict global cognitive deterioration in patients with mild cognitive impairment. Neurocase 11:14–25. doi:10.1080/13554790490896938

    Article  PubMed  Google Scholar 

  58. Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. doi:10.1126/science.1197623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee HG, Casadesus G, Zhu X et al (2004) Challenging the amyloid cascade hypothesis: senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. Ann N Y Acad Sci 1019:1–4. doi:10.1196/annals.1297.001

    Article  CAS  PubMed  Google Scholar 

  60. Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. doi:10.1038/nm1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guzmán-Martinez L, Farías GA, Maccioni RB (2013) Tau oligomers as potential targets for Alzheimer’s diagnosis and novel drugs. Front Neurol 4:167. doi:10.3389/fneur.2013.00167

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bennett DA, Schneider JA, Wilson RS et al (2004) Neurofibrillary tangles mediate the association of amyloid load with clinical Alzheimer disease and level of cognitive function. Arch Neurol 61:378–384. doi:10.1001/archneur.61.3.378

    Article  PubMed  Google Scholar 

  63. Jack CR Jr, Wiste HJ, Weigand SD et al (2015) Age, sex, and APOE ε4 effects on memory, brain structure, and β-amyloid across the adult life span. JAMA Neurol 72:511–519. doi:10.1001/jamaneurol.2014.4821

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jack CR Jr, Wiste HJ, Weigand SD et al (2013) Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 12:207–216. doi:10.1016/S1474-4422(12)70291-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rosenberg RN, Petersen RC (2015) The human Alzheimer disease project a new call to arms. JAMA Neurol 72:626–628. doi:10.1001/jamaneurol.2015.67

    Article  PubMed  Google Scholar 

  66. Fulop T, Larbi A, Witkowski JM et al (2010) Aging, frailty and age-related diseases. Biogerontology 11:547–563. doi:10.1007/s10522-010-9287-2

    Article  CAS  PubMed  Google Scholar 

  67. Rosano C, Simonsick EM, Harris TB et al (2005) Association between physical and cognitive function in healthy elderly: the health, aging and body composition study. Neuroepidemiology 24:8–14. doi:10.1159/000081043

    Article  PubMed  Google Scholar 

  68. Fitzpatrick AL, Buchanan CK, Nahin RL et al (2007) Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. J Gerontol A Biol Sci Med Sci 62:1244–1251

    Article  PubMed  Google Scholar 

  69. Raji MA, Kuo YF, Snih SA et al (2005) Cognitive status, muscle strength, and subsequent disability in older Mexican americans. J Am Geriatr Soc 53:1462–1468. doi:10.1111/j.1532-5415.2005.53457.x

    Article  PubMed  Google Scholar 

  70. Deary IJ, Johnson W, Gow AJ et al (2011) Losing one’s grip: a bivariate growth curve model of grip strength and nonverbal reasoning from age 79 to 87 years in the lothian birth cohort 1921. J Gerontol B Psychol Sci Soc Sci 66:699–707. doi:10.1093/geronb/gbr059

    Article  PubMed  Google Scholar 

  71. Verghese J, Wang C, Lipton RB, Holtzer R (2013) Motoric cognitive risk syndrome and the risk of dementia. J Gerontol A Biol Sci Med Sci 68:412–428. doi:10.1093/gerona/gls191

    Article  PubMed  Google Scholar 

  72. Verghese J, Annweiler C, Ayers E et al (2014) Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology 83:718–726. doi:10.1212/WNL.0000000000000717

    Article  PubMed  PubMed Central  Google Scholar 

  73. Verghese J, Ayers E, Barzilai N et al (2014) Motoric cognitive risk syndrome: multicenter incidence study. Neurology 83:2278–2284. doi:10.1212/WNL.0000000000001084

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kilgour AH, Ferguson KJ, Gray CD et al (2013) Neck muscle cross-sectional area, brain volume and cognition in healthy older men; a cohort study. BMC Geriatr 13:20. doi:10.1186/1471-2318-13-20

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kalinkovich A, Livshits G (2015) Sarcopenia—the search for emerging biomarkers. Ageing Res Rev 22:58–71. doi:10.1016/j.arr.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  76. Morley JE, Morris JC, Berg-Weger M et al (2015) Brain health: the importance of recognizing cognitive impairment: an IAGG Consensus Conference. J Am Med Dir Assoc 16:731–739. doi:10.1016/j.jamda.2015.06.017

    Article  PubMed  PubMed Central  Google Scholar 

  77. van de Rest O, van der Zwaluw NL, Tieland M et al (2014) Effect of resistance-type exercise training with or without protein supplementation on cognitive functioning in frail and pre-frail elderly: secondary analysis of a randomized, double-blind, placebo-controlled trial. Mech Ageing Dev 136–137:85–93. doi:10.1016/j.mad.2013.12.005

    Article  PubMed  Google Scholar 

  78. Langlois F, Vu TT, Chassé K et al (2013) Benefits of physical exercise training on cognition and quality of life in frail older adults. J Gerontol B Psychol Sci Soc Sci 68:400–404. doi:10.1093/geronb/gbs069

    Article  PubMed  Google Scholar 

  79. European Innovation Partnership on Active and Healthy Ageing ACTION PLAN on (2012)Prevention and early diagnosis of frailty and functional decline, both physical and cognitive, in older people. https://ec.europa.eu/research/innovation-union/pdf/active-healthy-ageing/a3_action_plan.pdf. Accessed 7 Nov 2016

Download references

Acknowledgements

This work was supported by grants from the Shanghai Hospital Development Center (No. SHDC12014221), Shanghai Municipal Commission of Health and Family Planning, Key developing disciplines (2015ZB0501).

Author contributions

QR designed the study, supervised the searches of reviewed articles, and wrote the paper. GD designed the study, supervised the searches of reviewed articles, and wrote the paper. DS collected reviewed articles, and wrote the paper. AG supervised the searches of reviewed articles, and wrote the paper. ML and DS collected reviewed articles, and wrote the paper. FP designed the study, supervised the searches of reviewed articles, and wrote the paper. ZY designed the study, supervised the searches of reviewed articles, and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francesco Panza or Zhuowei Yu.

Ethics declarations

Conflict of interest

None declared.

Research involving human participants and/or animals

None declared.

Informed consent

Not applicable.

Additional information

Q. Ruan and G. D’Onofrio contribute equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, Q., D’Onofrio, G., Sancarlo, D. et al. Emerging biomarkers and screening for cognitive frailty. Aging Clin Exp Res 29, 1075–1086 (2017). https://doi.org/10.1007/s40520-017-0741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-017-0741-8

Keywords

Navigation