Skip to main content
Log in

FDG PET radiomics: a review of the methodological aspects

  • Systematic Review
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

Purpose

To perform an updated review regarding the influence of methodological conditions on radiomics analyses of 18F-FDG PET imaging.

Methods

We performed a systematic review of the literature using PubMed/Medline and Google scholars, with multiple research keywords for each organ accompanying the terms “radiomics”, “texture”, “heterogeneity”, “FDG”, “PET” and “PET/CT”. The review considers methodological studies for shape, histogram and textural features extracted from FDG PET imaging. The references cited in the retrieved articles were also explored to find additional studies. The search was limited to English language. Preclinical and animal studies were not included in the review. A total of 44 original articles were considered for the review.

Results

In the same conditions, repeatability is very variable among the radiomics features in FDG PET. The vast majority of features are sensitive to acquisition and reconstruction settings independently of the category or order of features. Similar sensitivity and variability are observed with respect to respiratory motion, pre-processing, segmentation method, and specifically for textural features, discretisation of grey levels and implementation/parameterisation of texture matrices.

Conclusion

Radiomics features are sensitive to almost all factors involved in the PET/CT workflow, from the generation of the images, to the radiomics implementation choices. This strongly supports the need for standardization efforts of these conditions to enable implementation in clinical routine and multicentric studies. However, to date the repercussion of these features fluctuations on the clinical endpoints has been rarely studied. Similar standardization and consensus will also be needed for the statistical analysis and machine learning aspects involved in radiomics analyses of FDG PET images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ASM:

Angular second moment

CCC:

Concordance correlation coefficient

CHAUC :

Area under the curve of the cumulative histogram

COV:

Coefficient of variation

FLAB:

Fuzzy locally adaptive bayesian algorithm

GLCM:

Grey-level co-occurrence matrix

GLRLM:

Grey-level run-length matrix

GLZSM:

Grey-level zone-size matrix

HILAE:

High-intensity large area emphasis

HGZE:

High grey-level zone emphasis

ICC:

Intra-class correlation coefficients

IV:

Intensity variability

LGZE:

Low grey-level zone emphasis

LRE:

Long-run emphasis

MTV:

Metabolic tumour volume

NGTDM:

Neighbourhood grey-tone difference matrix

NSCLC:

Non-small lung cancer

OSEM:

Ordered subset expectation maximisation

PSF:

Point spread function

SRE:

Short-run emphasis

SUV:

Standardised uptake value

SUVSD :

SUV standard deviation

SZV:

Size-zone variability

TOF:

Time of flight

VOI:

Volume of interest

ZP:

Zone percentage

References

  1. Ganeshan B, Panayiotou E, Burnand K et al (2012) Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 22(4):796–802

    Article  Google Scholar 

  2. O’Connor JP, Rose CJ, Waterton JC et al (2015) Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clin Cancer Res 21(2):249–257

    Article  Google Scholar 

  3. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278(2):563–577

    Article  Google Scholar 

  4. Hatt M, Tixier F, Visvikis D et al (2017) Radiomics in PET/CT: more than meets the eye? J Nucl Med 58(3):365–366

    Article  Google Scholar 

  5. El Naqa I, Grigsby P, Apte A et al (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit 42(6):1162–1171

    Article  Google Scholar 

  6. Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52(3):369–378

    Article  Google Scholar 

  7. Cook GJ, Yip C, Siddique M et al (2013) Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med 54(1):19–26

    Article  Google Scholar 

  8. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  Google Scholar 

  9. Lovinfosse P, Janvary ZL, Coucke P et al (2016) FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy. Eur J Nucl Med Mol Imaging 43(8):1453–1460

    Article  CAS  Google Scholar 

  10. Lovinfosse P, Koopmansch B, Lambert F et al (1063) (18)F-FDG PET/CT imaging in rectal cancer: relationship with the RAS mutational status. Br J Radiol 2016(89):20160212

    Google Scholar 

  11. Vallieres M, Kumar A, Sultanem K et al (2016) FDG-PET image-derived features can determine HPV status in head-and-neck cancer. Int J Radiat Oncol Biol Phys 87(2):S467

    Article  Google Scholar 

  12. Yip SS, Kim J, Coroller TP et al (2017) Associations between somatic mutations and metabolic imaging phenotypes in non-small cell lung cancer. J Nucl Med 58(4):569–576

    Article  CAS  Google Scholar 

  13. Lovinfosse P, Polus M, Van Daele D et al (2018) FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging 45(3):365–375

    Article  Google Scholar 

  14. Wahl RL, Jacene H, Kasamon Y et al (2009) From RECIST to PERCIST: evolving Considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122S–150S

    Article  CAS  Google Scholar 

  15. Tixier F, Hatt M, Le Rest CC et al (2012) Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET. J Nucl Med 53(5):693–700

    Article  Google Scholar 

  16. Leijenaar RT, Carvalho S, Velazquez ER et al (2013) Stability of FDG-PET Radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol 52(7):1391–1397

    Article  CAS  Google Scholar 

  17. van Velden FH, Nissen IA, Jongsma F et al (2014) Test-retest variability of various quantitative measures to characterize tracer uptake and/or tracer uptake heterogeneity in metastasized liver for patients with colorectal carcinoma. Mol Imaging Biol 16(1):13–18

    Article  Google Scholar 

  18. Desseroit MC, Tixier F, Weber WA et al (2017) Reliability of PET/CT shape and heterogeneity features in functional and morphologic components of non-small cell lung cancer tumors: a repeatability analysis in a prospective multicenter cohort. J Nucl Med 58(3):406–411

    Article  CAS  Google Scholar 

  19. Galavis PE, Hollensen C, Jallow N et al (2010) Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol 49(7):1012–1016

    Article  Google Scholar 

  20. Lovat E, Siddique M, Goh V et al (2017) The effect of post-injection (18)F-FDG PET scanning time on texture analysis of peripheral nerve sheath tumours in neurofibromatosis-1. EJNMMI Res 7(1):35

    Article  Google Scholar 

  21. Hustinx R, Smith RJ, Benard F et al (1999) Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med 26(10):1345–1348

    Article  CAS  Google Scholar 

  22. Cheng G, Torigian DA, Zhuang H et al (2013) When should we recommend use of dual time-point and delayed time-point imaging techniques in FDG PET? Eur J Nucl Med Mol Imaging 40(5):779–787

    Article  CAS  Google Scholar 

  23. Yan J, Chu-Shern JL, Loi HY et al (2015) Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med 56(11):1667–1673

    Article  CAS  Google Scholar 

  24. Orlhac F, Nioche C, Soussan M et al (2017) Understanding changes in tumor texture indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med 58(3):387–392

    Article  Google Scholar 

  25. Lasnon C, Majdoub M, Lavigne B et al (2016) (18)F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging 43(13):2324–2335

    Article  Google Scholar 

  26. Hatt M, Cheze le Rest C, Descourt P et al (2010) Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys 77(1):301–308

    Article  Google Scholar 

  27. Hatt M, Cheze-le Rest C, van Baardwijk A et al (2011) Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med 52(11):1690–1697

    Article  Google Scholar 

  28. van Velden FH, Kramer GM, Frings V et al (2016) Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: impact of reconstruction and delineation. Mol Imaging Biol 18(5):788–795

    Article  Google Scholar 

  29. Hatt M, Tixier F, Cheze Le Rest C et al (2013) Robustness of intratumour (1)(8)F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma. Eur J Nucl Med Mol Imaging 40(11):1662–1671

    Article  Google Scholar 

  30. Doumou G, Siddique M, Tsoumpas C et al (2015) The precision of textural analysis in (18)F-FDG-PET scans of oesophageal cancer. Eur Radiol 25(9):2805–2812

    Article  Google Scholar 

  31. Grootjans W, Tixier F, van der Vos CS et al (2016) The impact of optimal respiratory gating and image noise on evaluation of intratumor heterogeneity on 18F-FDG PET imaging of lung cancer. J Nucl Med 57(11):1692–1698

    Article  Google Scholar 

  32. Forgacs A, Jonsson HP, Dahlbom M (2016) A study on the basic criteria for selecting heterogeneity parameters of F18-FDG PET images. PLoS One 11(10):e0164113

    Article  Google Scholar 

  33. Shiri I, Rahmim A, Ghaffarian P et al (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27(11):4498–4509

    Article  Google Scholar 

  34. Yip SS, Aerts HJ (2016) Applications and limitations of radiomics. Phys Med Biol 61(13):R150–R166

    Article  CAS  Google Scholar 

  35. Johnson WE, Li C, Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1):118–127

    Article  Google Scholar 

  36. Muller C, Schillert A, Rothemeier C et al (2016) Removing batch effects from longitudinal gene expression—quantile normalization plus ComBat as best approach for microarray transcriptome data. PLoS One 11(6):e0156594

    Article  Google Scholar 

  37. Goh WWB, Wang W, Wong L (2017) Why batch effects matter in omics data, and how to avoid them. Trends Biotechnol 35(6):498–507

    Article  CAS  Google Scholar 

  38. Orlhac F, Boughdad S, Philippe C et al. (2018) A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med

  39. Fortin JP, Parker D, Tunc B et al (2017) Harmonization of multi-site diffusion tensor imaging data. Neuroimage 161:149–170

    Article  Google Scholar 

  40. Cheng NM, Fang YH, Yen TC (2013) The promise and limits of PET texture analysis. Ann Nucl Med 27(9):867–869

    Article  CAS  Google Scholar 

  41. Hahn DA, Daum V, Hornegger J (2010) Automatic parameter selection for multimodal image registration. IEEE Trans Med Imaging 29(5):1140–1155

    Article  Google Scholar 

  42. Cheng NM, Fang YH, Chang JT et al (2013) Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma. J Nucl Med 54(10):1703–1709

    Article  CAS  Google Scholar 

  43. Orlhac F, Soussan M, Maisonobe JA et al (2014) Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis. J Nucl Med 55(3):414–422

    Article  CAS  Google Scholar 

  44. Leijenaar RT, Nalbantov G, Carvalho S et al (2015) The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075

    Article  CAS  Google Scholar 

  45. Orlhac F, Soussan M, Chouahnia K et al (2015) 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer. PLoS One 10(12):e0145063

    Article  Google Scholar 

  46. Lu L, Lv W, Jiang J et al (2016) Robustness of radiomic features in [(11)C]choline and [(18)F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol 18(6):935–945

    Article  CAS  Google Scholar 

  47. Brooks FJ, Grigsby PW (2014) The effect of small tumor volumes on studies of intratumoral heterogeneity of tracer uptake. J Nucl Med 55(1):37–42

    Article  CAS  Google Scholar 

  48. Hatt M, Majdoub M, Vallieres M et al (2015) 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med 56(1):38–44

    Article  CAS  Google Scholar 

  49. Vallieres M, Freeman CR, Skamene SR et al (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60(14):5471–5496

    Article  CAS  Google Scholar 

  50. Hatt M, Lee JA, Schmidtlein CR et al (2017) Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group No. 211. Med Phys 44(6):e1–e42

    Article  CAS  Google Scholar 

  51. Schinagl DA, Vogel WV, Hoffmann AL et al (2007) Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 69(4):1282–1289

    Article  CAS  Google Scholar 

  52. Vees H, Senthamizhchelvan S, Miralbell R et al (2009) Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients. Eur J Nucl Med Mol Imaging 36(2):182–193

    Article  Google Scholar 

  53. Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37(11):2165–2187

    Article  Google Scholar 

  54. Hatt M, Laurent B, Ouahabi A et al (2018) The first MICCAI challenge on PET tumor segmentation. Med Image Anal 44:177–195

    Article  Google Scholar 

  55. Hatt M, Laurent B, Fayad H et al (2018) Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method. Eur J Nucl Med Mol Imaging 45(4):630–641

    Article  CAS  Google Scholar 

  56. Nestle U, Kremp S, Schaefer-Schuler A et al (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46(8):1342–1348

    PubMed  Google Scholar 

  57. Frings V, van Velden FH, Velasquez LM et al (2014) Repeatability of metabolically active tumor volume measurements with FDG PET/CT in advanced gastrointestinal malignancies: a multicenter study. Radiology 273(2):539–548

    Article  Google Scholar 

  58. Tian J, Xue J, Dai Y et al (2008) A novel software platform for medical image processing and analyzing. IEEE Trans Inf Technol Biomed 12(6):800–812

    Article  Google Scholar 

  59. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Article  Google Scholar 

  60. Hatt M, Visvikis D, Pradier O et al (2011) Baseline (1)(8)F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer. Eur J Nucl Med Mol Imaging 38(9):1595–1606

    Article  Google Scholar 

  61. Hatt M, Cheze le Rest C, Turzo A et al (2009) A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 28(6):881–893

    Article  Google Scholar 

  62. Parmar C, Velazquez ER, Leijenaar R (2014) Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9(7):e102107

    Article  Google Scholar 

  63. Yip SS, Coroller TP, Sanford NN et al (2016) Use of registration-based contour propagation in texture analysis for esophageal cancer pathologic response prediction. Phys Med Biol 61(2):906–922

    Article  CAS  Google Scholar 

  64. Hsu CY, Doubrovin M, Hua CH et al (2018) Radiomics features differentiate between normal and tumoral high-Fdg uptake. Sci Rep 8(1):3913

    Article  Google Scholar 

  65. Yip S, McCall K, Aristophanous M et al (2014) Comparison of texture features derived from static and respiratory-gated PET images in non-small cell lung cancer. PLoS One 9(12):e115510

    Article  Google Scholar 

  66. Oliver JA, Budzevich M, Zhang GG et al (2015) Variability of image features computed from conventional and respiratory-gated PET/CT images of lung cancer. Transl Oncol 8(6):524–534

    Article  Google Scholar 

  67. Vaidya M, Creach KM, Frye J et al (2012) Combined PET/CT image characteristics for radiotherapy tumor response in lung cancer. Radiother Oncol 102(2):239–245

    Article  Google Scholar 

  68. Lemarignier C, Martineau A, Teixeira L et al (2017) Correlation between tumour characteristics, SUV measurements, metabolic tumour volume, TLG and textural features assessed with (18)F-FDG PET in a large cohort of oestrogen receptor-positive breast cancer patients. Eur J Nucl Med Mol Imaging 44(7):1145–1154

    Article  CAS  Google Scholar 

  69. O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14(3):169–186

    Article  Google Scholar 

  70. Zwanenburg A, Leger S, Vallières M et al. (2016) Image biomarker standardisation initiative. arXiv: 161207003

  71. Parmar C, Grossmann P, Bussink J et al (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087

    Article  CAS  Google Scholar 

  72. Ypsilantis PP, Siddique M, Sohn HM et al (2015) Predicting response to neoadjuvant chemotherapy with PET imaging using convolutional neural networks. PLoS One 10(9):e0137036

    Article  Google Scholar 

  73. Chicco D (2017) Ten quick tips for machine learning in computational biology. BioData Min 10:35

    Article  Google Scholar 

  74. Folkert MR, Setton J, Apte AP et al (2017) Predictive modeling of outcomes following definitive chemoradiotherapy for oropharyngeal cancer based on FDG-PET image characteristics. Phys Med Biol 62(13):5327–5343

    Article  CAS  Google Scholar 

  75. Leger S, Zwanenburg A, Pilz K et al (2017) A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep 7(1):13206

    Article  Google Scholar 

  76. Carvalho S, Leijenaar RTH, Troost EGC et al (2018) 18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC)—a prospective externally validated study. PLoS One 13(3):e0192859

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PL: Content planning, literature search and review, manuscript writing. DV: Content planning, manuscript editing. RH: Content planning, manuscript editing. MH: Content planning, manuscript writing and editing.

Corresponding author

Correspondence to Pierre Lovinfosse.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovinfosse, P., Visvikis, D., Hustinx, R. et al. FDG PET radiomics: a review of the methodological aspects. Clin Transl Imaging 6, 379–391 (2018). https://doi.org/10.1007/s40336-018-0292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-018-0292-9

Keywords

Navigation