Skip to main content
Log in

Comment on: “Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography”

  • Letter to the Editor
  • Published:
Sports Medicine Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Macgregor LJ, Hunter AM, Orizio C, Fairweather MM, Ditroilo M. Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Med. 2018;48:1–14. https://doi.org/10.1007/s40279-018-0912-6.

    Article  Google Scholar 

  2. Tous-Fajardo J, Moras G, Rodríguez-Jiménez S, Usach R, Doutres DM, Maffiuletti NA. Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography. J Electromyogr Kinesiol. 2010;20:761–6.

    Article  PubMed  Google Scholar 

  3. Martín-Rodríguez S, Loturco I, Hunter AM, Rodríguez-Ruiz D, Munguia-Izquierdo D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: a systematic analysis. J Strength Cond Res. 2017. Available from: http://insights.ovid.com/crossref?an=00124278-900000000-95748 (in press).

  4. Simunic B, Degens H, Rittweger J, Narici M, Mekjavic IB, Pisot R. Noninvasive estimation of myosin heavy chain composition in human skeletal muscle. Med Sci Sport Exerc. 2011;43:1619–25.

    Article  CAS  Google Scholar 

  5. Dahmane R, Djordjevič S, Šimunič B, Valenčič V. Spatial fiber type distribution in normal human muscle: histochemical and tensiomyographical evaluation. J Biomech. 2005;38:2451–9.

    Article  PubMed  Google Scholar 

  6. Dahmane R, Valencic V, Knez N, Erzen I. Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med Biol Eng Comput. 2001;39:51–5.

    Article  CAS  PubMed  Google Scholar 

  7. Valencic V, Knez N, Simunic B. Tenziomiography: detection of skeletal muscle response by means of radial muscle belly displacement. Fac Electr Eng Slov. 2001;1:1–10.

    Google Scholar 

  8. Evetovich TK, Housh TJ, Stout JR, Johnson GO, Smith DB, Ebersole KT. Mechanomyographic responses to concentric isokinetic muscle contractions. Eur J Appl Physiol Occup Physiol. 1997;75:166–9.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson GJ, Murphy AJ, Pryor JF. Musculotendinous stiffness: its relationship to eccentric, isometric and concentric performance. J Appl Physiol. 1994;76:2714–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hughes DC, Wallace MA, Baar K. Effects of aging, exercise, and disease on force transfer in skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309:E1–10. Available from: http://ajpendo.physiology.org/lookup/doi/10.1152/ajpendo.00095.2015.

  11. Loturco I, Gil S, de S Laurino CF, Roschel H, Kobal R, Cal Abad CC, et al. Differences in muscle mechanical properties between elite power and endurance athletes: a comparative study. J Strength Cond Res. 2015;29:1723–8.

    Article  PubMed  Google Scholar 

  12. de Paula Simola RÁ, Raeder C, Wiewelhove T, Kellmann M, Meyer T, Pfeiffer M, et al. Muscle mechanical properties of strength and endurance athletes and changes after one week of intensive training. J Electromyogr Kinesiol. 2016;30:73–80.

    Article  PubMed  Google Scholar 

  13. Valenzuela PL, Montalvo Z, Sánchez-Martínez G, Torrontegi E, De La Calle-Herrero J, Domínguez-Castells R, et al. Relationship between skeletal muscle contractile properties and power production capacity in female Olympic rugby players. Eur J Sport Sci. 2018;18:677–84. https://doi.org/10.1080/17461391.2018.1438521.

    Article  PubMed  Google Scholar 

  14. Loturco I, Nakamura FY, Tricoli V, Kobal R, Abad CCC, Kitamura K, et al. Determining the optimum power load in jump squat using the mean propulsive velocity. PLoS One. 2015;10:1–12.

    Article  CAS  Google Scholar 

  15. Croisier J-L, Forthhomme B, Namurois M-H, Vanderthommen M, Crielaard J-M. Hamstring muscle strain recurrence and strength performance disorders. Am J Sports Med. 2002;30:199–203.

    Article  PubMed  Google Scholar 

  16. Croisier JL, Ganteaume S, Binet J, Genty M, Ferret JM. Strength imbalances and prevention of hamstring injury in professional soccer players: a prospective study. Am J Sports Med. 2008;36:1469–75.

    Article  PubMed  Google Scholar 

  17. Lehance C, Binet J, Bury T, Croisier JL. Muscular strength, functional performances and injury risk in professional and junior elite soccer players. Scand J Med Sci Sport. 2009;19:243–51.

    Article  CAS  Google Scholar 

  18. Jones PA, Bampouras TM. A comparison of isokinetic and functional methods of assessing bilateral strength imbalance. J Strength Cond Res. 2010;24:1553–8.

    Article  PubMed  Google Scholar 

  19. Menzel HJ, Chagas M, Szmuchrowski L, Araujo S, de Andrade A, Resende de Jesus-Moraleida F. Analysis of lower limb asymmetries by isokinetic and vertical jump tests in soccer players. J Strength Cond Res. 2013;27:1370–7.

    Article  PubMed  Google Scholar 

  20. Trivers R, Fink B, Russell M, McCarty K, James B, Palestis BG. Lower body symmetry and running performance in elite Jamaican track and field athletes. PLoS One. 2014;9:e113106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alentorn-Geli E, Alvarez-Diaz P, Ramon S, Marin M, Steinbacher G, Boffa JJ, et al. Assessment of neuromuscular risk factors for anterior cruciate ligament injury through tensiomyography in male soccer players. Knee Surg Sports Traumatol Arthrosc. 2015;23:2508–13.

    Article  PubMed  Google Scholar 

  22. Alvarez-Diaz P, Alentorn-Geli E, Ramon S, Marin M, Steinbacher G, Rius M, et al. Effects of anterior cruciate ligament reconstruction on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players. Knee Surg Sports Traumatol Arthrosc. 2015;23:3407–13.

    Article  PubMed  Google Scholar 

  23. Maeda N, Urabe Y, Tsutsumi S, Fujishita H, Numano S, Takeuchi T, et al. Symmetry tensiomyographic neuromuscular response after chronic anterior cruciate ligament (ACL) reconstruction. Knee Surg Sports Traumatol Arthrosc. 2018;26:411–7.

    Article  PubMed  Google Scholar 

  24. García-García O, Serrano-Gómez V, Hernández-Mendo A, Morales-Sánchez V. Baseline mechanical and neuromuscular profile of knee extensor and flexor muscles in professional soccer players at the start of the pre-season. J Hum Kinet. 2017;58:23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gil S, Loturco I, Tricoli V, Ugrinowitsch C, Kobal R, Abad CCC, et al. Tensiomyography parameters and jumping and sprinting performance in Brazilian elite soccer players. Sports Biomech. 2015;14:340–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26271313.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro L. Valenzuela.

Ethics declarations

Funding

Pedro Valenzuela is supported by a predoctoral contract granted by the University of Alcalá (FPI2016). No specific sources of funding were used to assist in the preparation of this letter.

Conflict of interest

Pedro Valenzuela, Guillermo Sánchez-Martínez, Elaia Torrontegi, Javier Vázquez-Carrión, Zigor Montalvo and Alejandro Lucia declare that they have no conflicts of interest relevant to the content of this letter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenzuela, P.L., Sánchez-Martínez, G., Torrontegi, E. et al. Comment on: “Assessment of Skeletal Muscle Contractile Properties by Radial Displacement: The Case for Tensiomyography”. Sports Med 49, 973–975 (2019). https://doi.org/10.1007/s40279-018-0989-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-018-0989-y

Navigation