Skip to main content
Log in

Size Exponents for Scaling Maximal Oxygen Uptake in Over 6500 Humans: A Systematic Review and Meta-Analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Maximal oxygen uptake (\({\dot{\text{V}}\text{O}}\) 2max) is conventionally normalized to body size as a simple ratio or using an allometric exponent < 1. Nevertheless, the most appropriate body size variable to use for scaling and the value of the exponent are still enigmatic. Studies tend to be based on small samples and can, therefore, lack precision.

Objective

The objective of this systematic review was to provide a quantitative synthesis of reported static allometric exponents used for scaling \({\dot{\text{V}}\text{O}}\) 2max to whole body mass and fat-free mass.

Methods

Eight electronic databases (CINAHL, Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, PubMed, Scopus, SPORTDiscus and Web of Science) were searched for relevant studies published up to January 2016. Search terms included ‘oxygen uptake’, ‘cardiorespiratory fitness’, ‘\({\dot{\text{V}}\text{O}}\) 2max’, ‘\({\dot{\text{V}}\text{O}}\) 2peak’, ‘scaling’ and all interchangeable terms. Inclusion criteria included human cardiorespiratory fitness data; cross-sectional study designs; an empirical derivation of the exponent; reported precision statistics; and reported information regarding participant sex, age and sports background, \({\dot{\text{V}}\text{O}}\) 2max protocol, whole body composition protocol and line-fitting methods. A random-effects model was used to quantify weighted pooled exponents and 95% confidence limits (Cls). Heterogeneity was quantified with the tau-statistic (τ). Meta-regression was used to quantify the impact of selected moderator variables on the exponent effect size. A 95% prediction interval was calculated to quantify the likely range of true fat-free mass exponents in similar future studies, with this distribution used to estimate the probability that an exponent would be above theorised universal values of \(\frac{2}{3}\text{and}\frac{3}{4}\).

Results

Thirty-six studies, involving 6514 participants, met the eligibility criteria. Whole body mass and fat-free mass were used as the scaling denominator in 27 and 15 studies, respectively. The pooled allometric exponent (95% Cls) was found to be 0.70 (0.64 to 0.76) for whole body mass and 0.90 (0.83 to 0.96) for fat-free mass. The between-study heterogeneity was greater for whole body mass (τ = ±0.15) than for fat-free mass (τ = ±0.11). Participant sex explained 30% of the between-study variability in the whole body mass exponent, but the influence on the fat-free mass exponent was trivial. The whole body mass exponent of 0.52 (0.40 to 0.64) for females was substantially lower than the 0.76 (0.70 to 0.83) for males, whereas the fat-free mass exponent was similar for both sexes. The effects of all other moderators were trivial. The 95% PI for fat-free mass ranged from 0.68 to 1.12. The estimated probability of a true fat-free mass exponent in a future study being greater than \(\frac{2}{3}\,\text{or}\,\frac{3}{4}\) power scaling is 0.98 (very likely) and 0.92 (likely), respectively.

Conclusions

In this quantitative synthesis of published studies involving over 6500 humans, the whole body mass exponent was found to be spuriously low and prone to substantial heterogeneity. We conclude that the scaling of \({\dot{\text{V}}\text{O}}\) 2max in humans is consistent with the allometric cascade model with an estimated prediction interval for the fat-free mass exponent not likely to be consistent with the \(\frac{2}{3}\text{and}\frac{3}{4}\) power laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rowland TW. Does peak VO2 reflect VO2max in children? Evidence from supramaximal testing. Med Sci Sports Exerc. 1993;25(6):689–93.

    Article  CAS  PubMed  Google Scholar 

  2. Day JR, Rossiter HB, Coats EM, et al. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95(5):1901–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.

    Article  CAS  PubMed  Google Scholar 

  4. Atkinson G, Davison R, Jeukendrup A, et al. Science and cycling: current knowledge and future directions for research. J Sports Sci. 2003;21(9):767–87.

    Article  PubMed  Google Scholar 

  5. Helgerud J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol Occup Physiol. 1994;68(2):155–61.

    Article  CAS  PubMed  Google Scholar 

  6. Helgerud J, Rodas G, Kemi OJ, et al. Strength and endurance in elite football players. Int J Sports Med. 2011;32(9):677–82.

    Article  CAS  PubMed  Google Scholar 

  7. Sandbakk O, Hegge AM, Losnegard T, et al. The physiological capacity of the world’s highest ranked female cross-country skiers. Med Sci Sports Exerc. 2016;48(6):1091–100.

    Article  PubMed  Google Scholar 

  8. Bacon AP, Carter RE, Ogle EA, et al. VO2max trainability and high intensity interval training in humans: a meta-analysis. PLoS One. 2013;8(9):e73182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milanovic Z, Pantelic S, Covic N, et al. Is recreational soccer effective for improving \({\dot{\text{V}}\text{O}}\)2max? a systematic review and meta-analysis. Sports Med. 2015;45(9):1339–53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sloth M, Sloth D, Overgaard K, et al. Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta-analysis. Scand J Med Sci Sports. 2013;23(6):e341–52.

    Article  CAS  PubMed  Google Scholar 

  11. Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sports Med. 2014;48(16):1227–34.

    Article  PubMed  Google Scholar 

  12. Curran-Everett D. Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ. 2013;37(3):213–9.

    Article  PubMed  Google Scholar 

  13. Packard GC, Boardman TJ. The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Phys A. 1999;122(1):37–44.

    Article  Google Scholar 

  14. Bjorgen S, Helgerud J, Husby V, et al. Aerobic high intensity one-legged interval cycling improves peak oxygen uptake in chronic obstructive pulmonary disease patients; no additional effect from hyperoxia. Int J Sports Med. 2009;30(12):872–8.

    Article  CAS  PubMed  Google Scholar 

  15. Hoff J, Kemi OJ, Helgerud J. Strength and endurance differences between elite and junior elite ice hockey players. The importance of allometric scaling. Int J Sports Med. 2005;26(7):537–41.

    Article  CAS  PubMed  Google Scholar 

  16. Loe H, Rognmo O, Saltin B, et al. Aerobic capacity reference data in 3816 healthy men and women 20–90 years. PLoS One. 2013;8(5):e64319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saltin B, Larsen H, Terrados N, et al. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports. 1995;5(4):209–21.

    Article  CAS  PubMed  Google Scholar 

  18. Cunha G, Lorenzi T, Sapata K, et al. Effect of biological maturation on maximal oxygen uptake and ventilatory thresholds in soccer players: an allometric approach. J Sports Sci. 2011;29(10):1029–39.

    Article  PubMed  Google Scholar 

  19. Viickberg U, Purge P, Jürimäe T, et al. Interpretation of peak oxygen consumption in 10–12-year-old soccer players: effect of biological maturation and body size. Acta Kinesiol Univ Tartu. 2013;19:16–30.

    Article  Google Scholar 

  20. Tanner JM. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol. 1949;2(1):1–15.

    CAS  PubMed  Google Scholar 

  21. Gould SJ. Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc. 1966;41(4):587–640.

    Article  CAS  PubMed  Google Scholar 

  22. Armstrong N, Welsman JR, Kirby BJ. Peak oxygen uptake and maturation in 12-yr olds. Med Sci Sports Exerc. 1998;30(1):165–9.

    Article  CAS  PubMed  Google Scholar 

  23. Batterham AM, Vanderburgh PM, Mahar MT, et al. Modeling the influence of body size on VO2peak: effects of model choice and body composition. J Appl Physiol. 1999;87(4):1317–25.

    CAS  PubMed  Google Scholar 

  24. Heil DP. Body mass scaling of peak oxygen uptake in 20- to 79-yr-old adults. Med Sci Sports Exerc. 1997;29(12):1602–8.

    Article  CAS  PubMed  Google Scholar 

  25. Pettersen SA, Fredriksen PM, Ingjer F. The correlation between peak oxygen uptake (VO2peak) and running performance in children and adolescents. Aspects of different units. Scand J Med Sci Sports. 2001;11(4):223–8.

    Article  CAS  PubMed  Google Scholar 

  26. Bokma F. Evidence against universal metabolic allometry. Funct Ecol. 2004;18(2):184–7.

    Article  Google Scholar 

  27. Ives AR, Midford PE, Garland T Jr. Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol. 2007;56(2):252–70.

    Article  PubMed  Google Scholar 

  28. Batterham AM, Jackson AS. Letter to the editor. Respir Physiol Neurobiol. 2005;146:3–4.

    Article  Google Scholar 

  29. Miller AT Jr, Blyth CS. Lean body mass as a metabolic reference standard. J Appl Physiol. 1953;5(7):311–6.

    CAS  PubMed  Google Scholar 

  30. Von Dobeln W. Maximal oxygen intake, body size, and total hemoglobin in normal man. Acta Physiol Scand. 1957;38(2):193–9.

    Article  Google Scholar 

  31. Weibel ER, Hoppeler H. Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol. 2005;208(Pt 9):1635–44.

    Article  PubMed  Google Scholar 

  32. Amara CE, Koval JJ, Johnson PJ, et al. Modelling the influence of fat-free mass and physical activity on the decline in maximal oxygen uptake with age in older humans. Exp Physiol. 2000;85(6):877–86.

    Article  CAS  PubMed  Google Scholar 

  33. Chamari K, Moussa-Chamari I, Boussaïdi L, et al. Appropriate interpretation of aerobic capacity: allometric scaling in adult and young soccer players. Br J Sports Med. 2005;39(2):97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davies MJ, Dalsky GP, Vanderburgh PM. Allometric scaling of VO2max by body mass and lean body mass in older men. J Aging Phys Act. 1995;3(4):324–31.

    Article  Google Scholar 

  35. Goosey-Tolfrey VL, Batterham AM, Tolfrey K. Scaling behavior of \({\dot{\text{V}}\text{O}}\) 2peak in trained wheelchair athletes. Med Sci Sports Exerc. 2003;35(12):2106–11.

    Article  PubMed  Google Scholar 

  36. Segers V, De Clercq D, Janssens M, et al. Running economy in early and late maturing youth soccer players does not differ. Br J Sports Med. 2008;42(4):289–94.

    Article  CAS  PubMed  Google Scholar 

  37. Tolfrey K, Barker A, Thom JM, et al. Scaling of maximal oxygen uptake by lower leg muscle volume in boys and men. J Appl Physiol. 2006;100(6):1851–6.

    Article  PubMed  Google Scholar 

  38. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Borenstein M, Hedges LV, Higgins JPT, et al. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1(2):97–111.

    Article  PubMed  Google Scholar 

  40. Higgins JPT. Commentary: heterogeneity in meta-analysis should be expected and appropriately quantified. Int J Epidemiol. 2008;37(5):1158–60.

    Article  PubMed  Google Scholar 

  41. IntHout J, Ioannidis JP, Rovers MM, et al. Plea for routinely presenting prediction intervals in meta-analysis. BMJ Open. 2016;6(7):e010247.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hopkins WG, Batterham AM. Error rates, decisive outcomes and publication bias with several inferential methods. Sports Med. 2016;46(10):1563–73.

    Article  PubMed  Google Scholar 

  43. Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Batterham AM, Jackson AS. Validity of the allometric cascade model at submaximal and maximal metabolic rates in exercising men. Respir Physiol Neurobiol. 2003;135(1):103–6.

    Article  PubMed  Google Scholar 

  45. Batterham AM, Tolfrey K, George KP. Nevill’s explanation of Kleiber’s 0.75 mass exponent: an artifact of collinearity problems in least squares models? J Appl Physiol. 1997;82(2):693–7.

    CAS  PubMed  Google Scholar 

  46. Bloxham SR, Welsman JR, Armstrong N. Ergometer-specific relationships between peak oxygen uptake and short-term power output in children. Pediatr Exerc Sci. 2005;17(2):136–48.

    Article  Google Scholar 

  47. Carvalho HM, Coelho-e-Silva MJ, Eisenmann JC, et al. Aerobic fitness, maturation, and training experience in youth basketball. Int J Sports Physiol Perform. 2013;8(4):428–34.

    Article  PubMed  Google Scholar 

  48. Carvalho HM, Milano GE, Lopes WA, et al. Peak oxygen uptake responses to training in obese adolescents: a multilevel allometric framework to partition the influence of body size and maturity status. Biomed Res Int. 2013;2013:618595.

    PubMed  PubMed Central  Google Scholar 

  49. Chia M, Aziz AR. Modelling maximal oxygen uptake in athletes: allometric scaling versus ratio-scaling in relation to body mass. Ann Acad Med Singapore. 2008;37(4):300–6.

    PubMed  Google Scholar 

  50. Cooper DM, Weiler-Ravell D, Whipp BJ, et al. Aerobic parameters of exercise as a function of body size during growth in children. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(3):628–34.

    CAS  PubMed  Google Scholar 

  51. Cunha G, Vaz MA, Geremia JM, et al. Maturity status does not exert effects on aerobic fitness in soccer players after appropriate normalization for body size. Pediatr Exerc Sci. 2016;28(3):456–65.

    Article  PubMed  Google Scholar 

  52. Eliakim A, Scheett T, Allmendinger N, et al. Training, muscle volume, and energy expenditure in nonobese American girls. J Appl Physiol. 2001;90(1):35–44.

    CAS  PubMed  Google Scholar 

  53. Jullien H, Ahmaidi S, Doutrellot PL, et al. Relationship between oxygen consumption and body mass during treadmill and cycle ergometry respectively. Sports Med Training Rehab. 1999;9(2):89–99.

    Article  Google Scholar 

  54. Markovic G, Vucetic V, Nevill AM. Scaling behaviour of \({\dot{\text{V}}\text{O}}\) 2 in athletes and untrained individuals. Ann Hum Biol. 2007;34(3):315–28.

    Article  PubMed  Google Scholar 

  55. Neder JA, Lerario MC, Castro ML, et al. Peak \({\dot{\text{V}}\text{O}}\) 2 correction for fat-free mass estimated by anthropometry and DEXA. Med Sci Sports Exerc. 2001;33(11):1968–75.

    Article  CAS  PubMed  Google Scholar 

  56. Nes BM, Osthus IB, Welde B, et al. Peak oxygen uptake and physical activity in 13- to 18-year-olds: the Young-HUNT study. Med Sci Sports Exerc. 2013;45(2):304–13.

    Article  PubMed  Google Scholar 

  57. Nevill A, Rowland T, Goff D, et al. Scaling or normalising maximum oxygen uptake to predict 1-mile run time in boys. Eur J Appl Physiol. 2004;92(3):285–8.

    Article  PubMed  Google Scholar 

  58. Nevill AM, Brown D, Godfrey R, et al. Modeling maximum oxygen uptake of elite endurance athletes. Med Sci Sports Exerc. 2003;35(3):488–94.

    Article  PubMed  Google Scholar 

  59. Nevill AM, Markovic G, Vucetic V, et al. Can greater muscularity in larger individuals resolve the 3/4 power-law controversy when modelling maximum oxygen uptake? Ann Hum Biol. 2004;31(4):436–45.

    Article  CAS  PubMed  Google Scholar 

  60. Rogers DM, Turley KR, Kujawa KI, et al. Allometric scaling factors for oxygen uptake during exercise in children. Pediatr Exerc Sci. 1995;7(1):12–25.

    Article  Google Scholar 

  61. Rowland T, Miller K, Vanderburgh P, et al. Cardiovascular fitness in premenarcheal girls and young women. Int J Sports Med. 2000;21(2):117–21.

    Article  CAS  PubMed  Google Scholar 

  62. Tartaruga MP, De Medeiros MH, Alberton CL, et al. Application of the allometric scale for the submaximal oxygen uptake in runners and rowers. Biol Sport. 2010;27(4):297–300.

    Article  Google Scholar 

  63. Valente-Dos-Santos J, Coelho-E-Silva MJ, Tavares ÓM, et al. Allometric modelling of peak oxygen uptake in male soccer players of 8–18 years of age. Ann Hum Biol. 2015;42(2):125–33.

    Article  PubMed  Google Scholar 

  64. Vanderburgh PM, Katch FI. Ratio scaling of VO2max penalizes women with larger percent body fat, not lean body mass. Med Sci Sports Exerc. 1996;28(9):1204–8.

    Article  CAS  PubMed  Google Scholar 

  65. Welsman JR, Armstrong N, Kirby BJ, et al. Exercise performance and magnetic resonance imaging-determined thigh muscle volume in children. Eur J Appl Physiol Occup Physiol. 1997;76(1):92–7.

    Article  CAS  PubMed  Google Scholar 

  66. Welsman JR, Armstrong N, Nevill AM, et al. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc. 1996;28(2):259–65.

    Article  CAS  PubMed  Google Scholar 

  67. Wijndaele K, Duvigneaud N, Matton L, et al. Muscular strength, aerobic fitness, and metabolic syndrome risk in Flemish adults. Med Sci Sports Exerc. 2007;39(2):233–40.

    Article  PubMed  Google Scholar 

  68. Senn SJ. Overstating the evidence: double counting in meta-analysis and related problems. BMC Med Res Methodol. 2009;9:10.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Graves LE, Batterham AM, Foweather L, et al. Scaling of peak oxygen uptake in children: a comparison of three body size index models. Med Sci Sports Exerc. 2013;45(12):2341–5.

    Article  CAS  PubMed  Google Scholar 

  70. Jensky-Squires NE, Dieli-Conwright CM, Rossuello A, et al. Validity and reliability of body composition analysers in children and adults. Br J Nutr. 2008;100(4):859–65.

    Article  CAS  PubMed  Google Scholar 

  71. Schmidt-Nielsen K. Energy metabolism, body size, and problems of scaling. Fed Proc. 1970;29(4):1524–32.

    CAS  PubMed  Google Scholar 

  72. West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science. 1999;284(5420):1677–9.

    Article  CAS  PubMed  Google Scholar 

  73. Darveau CA, Suarez RK, Andrews RD, et al. Allometric cascade as a unifying principle of body mass effects on metabolism. Nature. 2002;417(6885):166–70.

    Article  CAS  PubMed  Google Scholar 

  74. Higgins JPT, Green S, editors. Cochrane handbook for systematic reviews of interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. http://www.handbook.cochrane.org/. Accessed 9 Sept 2016.

  75. Suarez RK, Darveau CA. Multi-level regulation and metabolic scaling. J Exp Biol. 2005;208(Pt 9):1627–34.

    Article  PubMed  Google Scholar 

  76. Hochachka PW, Darveau CA, Andrews RD, et al. Allometric cascade: a model for resolving body mass effects on metabolism. Comp Biochem Phys A. 2003;134(4):675–91.

    Article  Google Scholar 

  77. Calder WA. Scaling energetics of homeothermic vertebrates—an operational allometry. Annu Rev Physiol. 1987;49:107–20.

    Article  PubMed  Google Scholar 

  78. White CR, Kearney MR. Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr Physiol. 2014;4(1):231–56.

    Article  PubMed  Google Scholar 

  79. Hunt BE, Davy KP, Jones PP, et al. Role of central circulatory factors in the fat-free mass-maximal aerobic capacity relation across age. Am J Physiol. 1998;275(4 Pt 2):H1178–82.

    CAS  PubMed  Google Scholar 

  80. Saltin B. Exercise hyperaemia: magnitude and aspects on regulation in humans. J Physiol. 2007;583(Pt 3):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Savage VM, Deeds EJ, Fontana W. Sizing up allometric scaling theory. PLoS Comput Biol. 2008;4(9):e1000171.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mueller PJ, O’Hagan KP, Skogg KA, et al. Renal hemodynamic responses to dynamic exercise in rabbits. J Appl Physiol. 1998;85(5):1605–14.

    CAS  PubMed  Google Scholar 

  83. Parks CM, Manohar M. Distribution of blood flow during moderate and strenuous exercise in ponies (Equus caballus). Am J Vet Res. 1983;44(10):1861–6.

    CAS  PubMed  Google Scholar 

  84. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985;366:233–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Goran M, Fields DA, Hunter GR, et al. Total body fat does not influence maximal aerobic capacity. Int J Obes. 2000;24(7):841–8.

    Article  CAS  Google Scholar 

  86. Toth MJ, Goran MI, Ades PA, et al. Examination of data normalization procedures for expressing peak VO2 data. J Appl Physiol. 1993;75(5):2288–92.

    CAS  PubMed  Google Scholar 

  87. Carrick-Ranson G, Hastings JL, Bhella PS, et al. The effect of age-related differences in body size and composition on cardiovascular determinants of VO2max. J Gerontol A Biol Sci Med Sci. 2013;68(5):608–16.

    Article  PubMed  Google Scholar 

  88. Leikis MJ, McKenna MJ, Petersen AC, et al. Exercise performance falls over time in patients with chronic kidney disease despite maintenance of hemoglobin concentration. Clin J Am Soc Nephrol. 2006;1(3):488–95.

    Article  CAS  PubMed  Google Scholar 

  89. Toth MJ, Gardner AW, Ades PA, et al. Contribution of body composition and physical activity to age-related decline in peak VO2 in men and women. J Appl Physiol. 1994;77(2):647–52.

    CAS  PubMed  Google Scholar 

  90. Workeneh BT, Mitch WE. Review of muscle wasting associated with chronic kidney disease. Am J Clin Nutr. 2010;91(4):1128–32.

    Article  Google Scholar 

  91. Sandbakk O, Ettema G, Holmberg HC. Gender differences in endurance performance by elite cross-country skiers are influenced by the contribution from poling. Scand J Med Sci Sports. 2014;24(1):28–33.

    Article  CAS  PubMed  Google Scholar 

  92. Stoggl T, Enqvist J, Muller E, et al. Relationships between body composition, body dimensions, and peak speed in cross-country sprint skiing. J Sports Sci. 2010;28(2):161–9.

    Article  PubMed  Google Scholar 

  93. Batterham AM, George KP, Mullineaux DR. Allometric scaling of left ventricular mass by body dimensions in males and females. Med Sci Sports Exerc. 1997;29(2):181–6.

    Article  CAS  PubMed  Google Scholar 

  94. Vanderburgh PM. Two important cautions in the use of allometric scaling: the common exponent and group difference principles. Meas Phys Educ Exerc Sci. 1998;2(3):153–63.

    Article  Google Scholar 

  95. Wagner PD. Algebraic analysis of the determinants of VO2max. Respir Physiol. 1993;93(2):221–37.

    Article  CAS  PubMed  Google Scholar 

  96. Zakeri I, Puyau MR, Adolph AL, et al. Normalization of energy expenditure data for differences in body mass or composition in children and adolescents. J Nutr. 2006;136(5):1371–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Lolli.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Lorenzo Lolli, Alan Batterham, Kathryn Weston and Greg Atkinson declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lolli, L., Batterham, A.M., Weston, K.L. et al. Size Exponents for Scaling Maximal Oxygen Uptake in Over 6500 Humans: A Systematic Review and Meta-Analysis. Sports Med 47, 1405–1419 (2017). https://doi.org/10.1007/s40279-016-0655-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0655-1

Keywords

Navigation