Skip to main content
Log in

Detecting Residual Weakness: an Update on Quantitative Neuromuscular Monitoring

  • Neuromuscular Blockade (GS Murphy, Section Editor)
  • Published:
Current Anesthesiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the newest generation of quantitative neuromuscular monitors and the different modalities that can be used to minimize the risk of postoperative residual weakness.

Recent Findings

New guidelines and consensus statements are emerging that emphasize the importance of using quantitative monitors whenever neuromuscular blocking agents (NMBAs) are administered. Additionally, there are new technologies emerging in this area.

Summary

Residual neuromuscular blockade remains a common occurrence in the postoperative period. Even small degrees of residual muscle weakness can produce significant postoperative complications. Qualitative (subjective) assessment is an unacceptable technique to exclude residual neuromuscular blockade because fade is difficult to detect when train-of-four ratios are between 0.4 and 0.9. For that reason, using objective quantitative monitors is essential to confirm adequate recovery in all patients receiving NMBAs and ensure patient safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Lieutaud T, Billard V, Khalaf H, Debaene B. Muscle relaxation and increasing doses of propofol improve intubating conditions. Can J Anaesth. 2003;50(2):121–6.

    Article  PubMed  Google Scholar 

  2. Blobner M, Frick CG, Stäuble RB, Feussner H, Schaller SJ, Unterbuchner C, et al. Neuromuscular blockade improves surgical conditions (NISCO). Surg Endosc. 2015;29(3):627–36.

    Article  PubMed  Google Scholar 

  3. Griffith H, Johnson G. The use of curare in general anesthesia. Anesthesiology. 1942;3(4):418–20.

    Article  CAS  Google Scholar 

  4. Mencke T, Echternach M, Kleinschmidt S, Lux P, Barth V, Plinkert PK, et al. Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial. Anesthesiology. 2003;98(5):1049–56.

    Article  CAS  PubMed  Google Scholar 

  5. Bruintjes MH, van Helden EV, Braat AE, Dahan A, Scheffer GJ, van Laarhoven CJ, et al. Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: a systematic review and meta-analysis. Br J Anaesth. 2017;118(6):834–42.

    Article  CAS  PubMed  Google Scholar 

  6. Madsen MV, Staehr-Rye AK, Gatke MR, Claudius C. Neuromuscular blockade for optimising surgical conditions during abdominal and gynaecological surgery: a systematic review. Acta Anaesthesiol Scand. 2015;59(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  7. Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 2010;111(1):120–128.

  8. Hayes AH, Mirakhur RK, Breslin DS, Reid JE, McCourt KC. Postoperative residual block after intermediate-acting neuromuscular blocking drugs. Anaesthesia. 2001;56(4):312–8.

    Article  CAS  PubMed  Google Scholar 

  9. Debaene B, Plaud B, Dilly MP, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology. 2003;98(5):1042–8.

    Article  CAS  PubMed  Google Scholar 

  10. Eriksson LI, Sundman E, Olsson R, Nilsson L, Witt H, Ekberg O, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology. 1997;87(5):1035–43.

    Article  CAS  PubMed  Google Scholar 

  11. Herbstreit F, Peters J, Eikermann M. Impaired upper airway integrity by residual neuromuscular blockade: increased airway collapsibility and blunted genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology. 2009;110(6):1253–60.

    Article  PubMed  Google Scholar 

  12. Eriksson LI. Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol Scand. 1996;40(5):520–3.

    Article  CAS  PubMed  Google Scholar 

  13. •• Naguib M, Brull SJ, Kopman AF, Hunter JM, Fulesdi B, Arkes HR, et al. Consensus statement on perioperative use of neuromuscular monitoring. Anesth Analg. 2018;127(1):71–80 A recent consensus statement from the US on indications for and proper use of neuromuscular monitors.

    Article  PubMed  Google Scholar 

  14. •• Checketts MR, Alladi R, Ferguson K, Gemmell L, Handy JM, Klein AA, et al. Recommendations for standards of monitoring during anaesthesia and recovery 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2016;71(1):85–93 A recent consensus from Great Britain and Ireland providing guidance on the minimum standards for physiological monitoring of any patient undergoing anesthesia or sedation.

    Article  CAS  PubMed  Google Scholar 

  15. Viby-Mogensen J, Jensen NH, Engbaek J, Ording H, Skovgaard LT, Chraemmer-Jorgensen B. Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology. 1985;63(4):440–3.

    Article  CAS  PubMed  Google Scholar 

  16. Brull SJ, Silverman DG. Visual and tactile assessment of neuromuscular fade. Anesth Analg. 1993;77(2):352–5.

    Article  CAS  PubMed  Google Scholar 

  17. Brull SJ, Silverman DG. Real time versus slow-motion train-of-four monitoring: a theory to explain the inaccuracy of visual assessment. Anesth Analg. 1995;80(3):548–51.

    CAS  PubMed  Google Scholar 

  18. Capron F, Fortier LP, Racine S, Donati F. Tactile fade detection with hand or wrist stimulation using train-of-four, double-burst stimulation, 50-hertz tetanus, 100-hertz tetanus, and acceleromyography. Anesth Analg. 2006;102(5):1578–84.

    Article  PubMed  Google Scholar 

  19. Claudius C, Skovgaard LT, Viby-Mogensen J. Acceleromyography and mechanomyography for establishing potency of neuromuscular blocking agents: a randomized-controlled trial. Acta Anaesthesiol Scand. 2009;53(4):449–54.

    Article  CAS  PubMed  Google Scholar 

  20. Infinity Trident NMT SmartPod. Dräger website. [cited; Available from: https://www.draeger.com/Products/Content/infinity-trident-nmt-smartpod-pi-9002487-en-us.pdf.

  21. IntelliVue NMT module. Philips website. [cited; Available from: www.philips.com/nmtmodule.

  22. Dubois V, Fostier G, Dutrieux M, Jamart J, Collet S, de Dorlodot C, et al. Philips Intellivue NMT module: precision and performance improvements to meet the clinical requirements of neuromuscular block management. J Clin Monit Comput. 2019.

  23. Claudius C, Skovgaard LT, Viby-Mogensen J. Is the performance of acceleromyography improved with preload and normalization? A comparison with mechanomyography. Anesthesiology. 2009;110(6):1261–70.

    Article  PubMed  Google Scholar 

  24. TOF Scan. Dräger website. [cited; Available from: https://www.draeger.com/en_aunz/Hospital/Products/Patient-Monitoring/Patient-Monitoring-Pods/TOFscan.

  25. Kopman AF, Kopman DJ. An analysis of the TOF-watch algorithm for modifying the displayed train-of-four ratio. Acta Anaesthesiol Scand. 2006;50(10):1313–4.

    Article  CAS  PubMed  Google Scholar 

  26. Murphy GS, Szokol JW, Avram MJ, Greenberg SB, Shear TD, Deshur M, et al. Comparison of the TOFscan and the TOF-watch SX during recovery of neuromuscular function. Anesthesiology. 2018;129(5):880–8.

    Article  PubMed  Google Scholar 

  27. Colegrave N, Billard V, Motamed C, Bourgain JL. Comparison of the TOF-Scan acceleromyograph to TOF-watch SX: influence of calibration. Anaesth Crit Care Pain Med. 2016;35(3):223–7.

    Article  PubMed  Google Scholar 

  28. Stimpod NMS450 Peripheral Nerve Stimulator.XAvant Technology website. [cited; Available from: http://www.xavant.com/products.

  29. Stimpod NMS450. Precision Nerve Locator. XAvant Technology website. [cited; Available from: https://www.xavant.com/products/stimpod-nms410/.

  30. Hyman EC, Brull SJ. Clarification: current status of neuromuscular reversal and monitoring. Challenges and Opportunities Anesthesiology. 2017;127(4):730.

    PubMed  Google Scholar 

  31. TetraGraph. Senzime website. [cited; Available from: https://www.senzime.com/tetragraph/.

  32. TwitchView. Blink Device Company [cited; Available from: https://www.blinkdc.com/twitchview.

  33. Bowdle A, Bussey L, Michaelsen K, Jelacic S, Nair B. Togashi K, et al. Anaesthesia: A comparison of a prototype electromyograph vs. a mechanomyograph and an acceleromyograph for assessment of neuromuscular blockade; 2019.

    Google Scholar 

  34. E-NMT module. GE Healthcare website. [cited; Available from: www.gehealthcare.com.

  35. Stewart PA, Freelander N, Liang S, Heller G, Phillips S. Comparison of electromyography and kinemyography during recovery from non-depolarising neuromuscular blockade. Anaesth Intensive Care. 2014;42(3):378–84.

    Article  CAS  PubMed  Google Scholar 

  36. Murphy GS. Neuromuscular monitoring in the perioperative period. Anesth Analg. 2018;126(2):464–8.

    Article  PubMed  Google Scholar 

  37. Dutu M, Ivascu R, Tudorache O, Morlova D, Stanca A, Negoita S, et al. Neuromuscular monitoring: an update. Rom J Anaesth Intensive Care. 2018;25(1):55–60.

    PubMed  PubMed Central  Google Scholar 

  38. TOF-Cuff. RGB Medical Devices, S.A. Spain [cited; Available from: http://www.rgb-medical.com/en/special-product/tof-cuff-nmt-monitor.

  39. Rodiera J, Serradell A, Alvarez-Gomez JA, Aliaga L. The cuff method: a pilot study of a new method of monitoring neuromuscular function. Acta Anaesthesiol Scand. 2005;49(10):1552–8.

    Article  CAS  PubMed  Google Scholar 

  40. Veiga Ruiz G, Garcia Cayuela J, Orozco Montes J, Parreno Caparros M, Garcia Rojo B, Aguayo Albasini JL. Monitoring intraoperative neuromuscular blockade and blood pressure with one device (TOF-Cuff): a comparative study with mechanomyography and invasive blood pressure. Rev Esp Anestesiol Reanim. 2017;64(10):560–7.

    Article  CAS  PubMed  Google Scholar 

  41. Kazuma S, Wakasugi K, Hagiwara H, Yamakage M. Comparative study of TOF-cuff, a new neuromuscular blockade monitor, and TOF-Watch, an acceleromyography. Anesth Analg. 2019;129(1):e16–e9.

    Article  CAS  PubMed  Google Scholar 

  42. Krijtenburg P, Honing G, Martini C, Olofsen E, van Elst HJ, Scheffer GJ, et al. Comparison of the TOF-cuff((R)) monitor with electromyography and acceleromyography during recovery from neuromuscular block. Br J Anaesth. 2019;122(2):e22–e4.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ross Renew.

Ethics declarations

Conflict of Interest

Vivian Hernandez-Torres declares that he has no conflict of interest. J. Ross Renew has received research support through a grant from Merck (with funds to Mayo Clinic).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuromuscular Blockade

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Torres, V., Renew, J.R. Detecting Residual Weakness: an Update on Quantitative Neuromuscular Monitoring. Curr Anesthesiol Rep 10, 117–122 (2020). https://doi.org/10.1007/s40140-020-00391-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40140-020-00391-9

Keywords

Navigation