Skip to main content

Advertisement

Log in

Low prevalence of DHFR and DHPS mutations in Pneumocystis jirovecii strains obtained from a German cohort

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Background

Pneumocystis pneumonia (PCP) is an opportunistic and potentially life-threatening infection of immunocompromised individuals. A combination of trimethoprim–sulfamethoxazole is widely used for prophylaxis and treatment of PCP. Polymorphisms in the drug targets, the dihydropteroate synthase (DHPS) or the dihydrofolate reductase (DHFR) are presumably a reason for treatment failure.

Methods

We retrospectively examined the prevalence of DHPS and DHFR mutations in Pneumocystis jirovecii isolates obtained from HIV-infected and non-HIV-infected PCP patients. DHFR and DHPS genes were amplified using semi-nested PCR followed by sequencing. Obtained data were correlated with clinical findings.

Results

Sequencing of the DHPS gene was achieved in 81 out of 128 isolates (63%), the DHFR-gene was successfully sequenced in 96 isolates (75%). The vast majority of DHFR and DHPS sequences were either wild-type or showed synonymous single nucleotide polymorphisms. Only one sample contained a double mutation at DHPS codon 55 and codon 57 which was associated with treatment failure in some studies. No linkage of treatment failure to a DHFR or DHPS genotype was observed. In our cohort, 35 of 95 Patients (37%) were HIV-positive and 60 (63%) were HIV-negative. The overall mortality rate was 24% with a much higher rate among non-HIV patients.

Conclusion

DHPS and DHFR mutations exist but are infrequent in our cohort. The contribution of gene polymorphisms to treatment failure needs further research. In immunocompromised HIV-negative patients PCP is associated with high mortality rates. Prophylactic treatment is warranted in this patient subset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gluck T, Geerdes-Fenge HF, Straub RH, Raffenberg M, Lang B, Lode H, et al. Pneumocystis carinii pneumonia as a complication of immunosuppressive therapy. Infection. 2000;28:227–30.

    Article  CAS  PubMed  Google Scholar 

  2. Kovacs JA, Hiemenz JW, Macher AM, Stover D, Murray HW, Shelhamer J, et al. Pneumocystis carinii pneumonia: a comparison between patients with the acquired immunodeficiency syndrome and patients with other immunodeficiencies. Ann Intern Med. 1984;100:663–71.

    Article  CAS  PubMed  Google Scholar 

  3. Fisk DT, Meshnick S, Kazanjian PH. Pneumocystis carinii pneumonia in patients in the developing world who have acquired immunodeficiency syndrome. Clin Infect Dis. 2003;36:70–8.

    Article  PubMed  Google Scholar 

  4. Llibre JM, Revollo B, Vanegas S, Lopez-Nunez JJ, Ornelas A, Marin JM, et al. Pneumocystis jirovecii pneumonia in HIV-1-infected patients in the late-HAART era in developed countries. Scand J Infect Dis. 2013;45:635–44.

    Article  CAS  PubMed  Google Scholar 

  5. Cordonnier C, Cesaro S, Maschmeyer G, Einsele H, Donnelly JP, Alanio A, et al. Pneumocystis jirovecii pneumonia: still a concern in patients with haematological malignancies and stem cell transplant recipients. J Antimicrob Chemother. 2016;71:2379–85.

    Article  CAS  PubMed  Google Scholar 

  6. Fishman JA. Prevention of infection due to Pneumocystis carinii. Antimicrob Agents Chemother. 1998;42:995–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Esteves F, Gaspar J, Marques T, Leite R, Antunes F, Mansinho K, et al. Identification of relevant single-nucleotide polymorphisms in Pneumocystis jirovecii: relationship with clinical data. Clin Microbiol Infect. 2010;16:878–84.

    Article  CAS  PubMed  Google Scholar 

  8. Moorman AC, Von Bargen JC, Palella FJ, Holmberg SD. Pneumocystis carinii pneumonia incidence and chemoprophylaxis failure in ambulatory HIV-infected patients. HIV outpatient study (HOPS) investigators. JAIDS. 1998;19:182–8.

    CAS  PubMed  Google Scholar 

  9. Takahashi T, Hosoya N, Endo T, Nakamura T, Sakashita H, Kimura K, et al. Relationship between mutations in dihydropteroate synthase of Pneumocystis carinii f. sp. hominis isolates in Japan and resistance to sulfonamide therapy. J Clin Microbiol. 2000;38:3161–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mei Q, Gurunathan S, Masur H, Kovacs JA. Failure of co-trimoxazole in Pneumocystis carinii infection and mutations in dihydropteroate synthase gene. Lancet. 1998;351:1631–2.

    Article  CAS  PubMed  Google Scholar 

  11. Tyagi AK, Mirdha BR, Luthra K, Guleria R, Mohan A, Singh UB, et al. Pneumocystis jirovecii dihydropteroate synthase (DHPS) genotypes in non-HIV-immunocompromised patients: a tertiary care reference health centre study. Med Mycol. 2011;49:167–71.

    Article  CAS  PubMed  Google Scholar 

  12. Riebold D, Fritzsche C, Lademann M, Bier A, Reisinger EC. Pneumocystis jiroveci dihydropteroate synthase gene mutations at codon 171 but not at codons 55 or 57 detected in Germany. Clin Infect Dis. 2006;42:582–3.

    Article  PubMed  Google Scholar 

  13. Nahimana A, Rabodonirina M, Zanetti G, Meneau I, Francioli P, Bille J, et al. Association between a specific Pneumocystis jiroveci dihydropteroate synthase mutation and failure of pyrimethamine/sulfadoxine prophylaxis in human immunodeficiency virus-positive and negative patients. J Infect Dis. 2003;188:1017–23.

    Article  CAS  PubMed  Google Scholar 

  14. Queener SF, Cody V, Pace J, Torkelson P, Gangjee A. Trimethoprim resistance of dihydrofolate reductase variants from clinical isolates of Pneumocystis jirovecii. Antimicrob Agents Chemother. 2013;57:4990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Hal SJ, Gilgado F, Doyle T, Barratt J, Stark D, Meyer W, et al. Clinical significance and phylogenetic relationship of novel Australian Pneumocystis jirovecii genotypes. J Clin Microbiol. 2009;47:1818–23.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Helweg-Larsen J, Benfield TL, Eugen-Olsen J, Lundgren JD, Lundgren B. Effects of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of AIDS-associated P. carinii pneumonia. Lancet. 1999;354:1347–51.

    Article  CAS  PubMed  Google Scholar 

  17. Navin TR, Beard CB, Huang L, del Rio C, Lee S, Pieniazek NJ, et al. Effect of mutations in Pneumocystis carinii dihydropteroate synthase gene on outcome of P. carinii pneumonia in patients with HIV-1: a prospective study. Lancet. 2001;358:545–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ma L, Kovacs JA, Cargnel A, Valerio A, Fantoni G, Atzori C. Mutations in the dihydropteroate synthase gene of human-derived Pneumocystis carinii isolates from Italy are infrequent but correlate with prior sulfa prophylaxis. J Infect Dis. 2002;185:1530–2.

    Article  CAS  PubMed  Google Scholar 

  19. Avino LJ, Naylor SM, Roecker AM. Pneumocystis jirovecii pneumonia in the non-HIV-infected population. Ann Pharmacother. 2016;50:673–9.

    Article  PubMed  Google Scholar 

  20. Lane BR, Ast JC, Hossler PA, Mindell DP, Bartlett MS, Smith JW, et al. Dihydropteroate synthase polymorphisms in Pneumocystis carinii. J Infect Dis. 1997;175:482–5.

    Article  CAS  PubMed  Google Scholar 

  21. Lee SM, Cho YK, Sung YM, Chung DH, Jeong SH, Park JW, et al. A case of pneumonia caused by Pneumocystis jirovecii resistant to trimethoprim–sulfamethoxazole. Korean J Parasitol. 2015;53:321–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dale GE, Broger C, D’Arcy A, Hartman PG, DeHoogt R, Jolidon S, et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol. 1997;266:23–30.

    Article  CAS  PubMed  Google Scholar 

  23. Khalil I, Ronn AM, Alifrangis M, Gabar HA, Satti GM, Bygbjerg IC. Dihydrofolate reductase and dihydropteroate synthase genotypes associated with in vitro resistance of Plasmodium falciparum to pyrimethamine, trimethoprim, sulfadoxine, and sulfamethoxazole. Am J Trop Med Hyg. 2003;68:586–9.

    Article  CAS  PubMed  Google Scholar 

  24. Beard CB, Carter JL, Keely SP, Huang L, Pieniazek NJ, Moura IN, et al. Genetic variation in Pneumocystis carinii isolates from different geographic regions: implications for transmission. Emerg Infect Dis. 2000;6:265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Le Gal S, Robert-Gangneux F, Perrot M, Rouille A, Virmaux M, Damiani C, et al. Absence of Pneumocystis dihydropteroate synthase mutants in Brittany France. Diagn Microbiol Infect Dis. 2013;76:113–5.

    Article  PubMed  Google Scholar 

  26. Hauser PM, Nahimana A, Taffe P, Weber R, Francioli P, Bille J, et al. Interhuman transmission as a potential key parameter for geographical variation in the prevalence of Pneumocystis jirovecii dihydropteroate synthase mutations. Clin Infect Dis. 2010;51:e28–33.

    Article  PubMed  Google Scholar 

  27. de Armas Y, Friaza V, Capo V, Durand-Joly I, Govin A, de la Horra C, et al. Low genetic diversity of Pneumocystis jirovecii among Cuban population based on two-locus mitochondrial typing. Med Mycol. 2012;50:417–20.

    Article  PubMed  Google Scholar 

  28. Beser J, Dini L, Botero-Kleiven S, Krabbe M, Lindh J, Hagblom P. Absence of dihydropteroate synthase gene mutations in Pneumocystis jirovecii isolated from Swedish patients. Med Mycol. 2012;50:320–3.

    Article  CAS  PubMed  Google Scholar 

  29. Ma L, Borio L, Masur H, Kovacs JA. Pneumocystis carinii dihydropteroate synthase but not dihydrofolate reductase gene mutations correlate with prior trimethoprim–sulfamethoxazole or dapsone use. J Infect Dis. 1999;180:1969–78.

    Article  CAS  PubMed  Google Scholar 

  30. Bienvenu AL, Traore K, Plekhanova I, Bouchrik M, Bossard C, Picot S. Pneumocystis pneumonia suspected cases in 604 non-HIV and HIV patients. Int J Infect Dis. 2016;46:11–7.

    Article  PubMed  Google Scholar 

  31. Nickel P, Schurmann M, Albrecht H, Schindler R, Budde K, Westhoff T, et al. Clindamycin–primaquine for Pneumocystis jiroveci pneumonia in renal transplant patients. Infection. 2014;42:981–9.

    Article  CAS  PubMed  Google Scholar 

  32. Stern A, Green H, Paul M, Vidal L, Leibovici L. Prophylaxis for Pneumocystis pneumonia (PCP) in non-HIV immunocompromised patients. Cochrane Database Syst Rev. 2014;10:CD005590–5.

    Google Scholar 

  33. Maertens J, Cesaro S, Maschmeyer G, Einsele H, Donnelly JP, Alanio A, et al. ECIL guidelines for preventing Pneumocystis jirovecii pneumonia in patients with haematological malignancies and stem cell transplant recipients. J Antimicrob Chemother. 2016;71:2397–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JR receives financial support from the German Center for Infection Research (DZIF) Grant TTU 02 806 and the Center for Molecular Medicine Cologne (ZMMK). We thank Sandra Winter, Edeltraud van Gumpel and Pia Wiegel for technical assistance during PCR and sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rybniker.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest related to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez, I., Roderus, L., van Gumpel, E. et al. Low prevalence of DHFR and DHPS mutations in Pneumocystis jirovecii strains obtained from a German cohort. Infection 45, 341–347 (2017). https://doi.org/10.1007/s15010-017-1005-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-017-1005-4

Keywords

Navigation