Skip to main content
Log in

Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Pharmaceuticals have gained significant attention in recent years due to the environmental risks posed by their versatile application and occurrence in the natural aquatic environment. The transportation and distribution of pharmaceuticals in the environmental media mainly depends on their sorption behavior in soils, sediment–water systems and waste water treatment plants, which varies widely across pharmaceuticals. Sorption of ibuprofen, a non-steroidal anti-inflammatory drug, onto various soil minerals, viz., kaolinite, montmorillonite, goethite, and activated carbon, as a function of pH (3–11), ionic strength (NaCl concentration: 0.001–0.5 M), and the humic acid concentration (0–1,000 mg/L) was investigated through batch experiments. Experimental results showed that the sorption of ibuprofen onto all sorbents was highest at pH 3, with highest sorption capacity for activated carbon (28.5 mg/g). Among the minerals, montmorillonite sorbed more ibuprofen than kaolinite and goethite, with sorption capacity increasing in the order goethite (2.2 mg/g) < kaolinite (3.1 mg/g) < montmorillonite (6.1 mg/g). The sorption capacity of the selected minerals increased with increase in ionic strength of the solution in acidic pH condition indicating that the effect of pH was predominant compared to that of ionic strength. An increase in humic acid concentration from low to high values made the sorption phenomena very complex in the soil minerals. Based on the experimental observations, montmorillonite, among the selected soil minerals, could serve as a good candidate to remove high concentrations of ibuprofen from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Futaisi A, Jamrah A, Al-Hanai R (2007) Aspects of cationic dye molecule adsorption to palygorskite. Desalination 214(1–3):327–342

    Article  CAS  Google Scholar 

  • Alkan M, Demirbaş Ö, Doğan M (2007) Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous Mesoporous Mater 101(3):388–396

    Article  CAS  Google Scholar 

  • Babel S, Opiso EM (2007) Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. Int J Environ Sci Technol 4(1):99–107

    CAS  Google Scholar 

  • Bautista-Toledo I, Ferro-García MA, Rivera-Utrilla J, Moreno-Castilla C, Vegas Fernández FJ (2005) Bisphenol a removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environ Sci Technol 39(16):6246–6250

    Article  CAS  Google Scholar 

  • Behera SK, Oh SY, Park HS (2010) Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength and humic acid. J Hazard Mater 179(1–3):684–691

    Article  CAS  Google Scholar 

  • Behera SK, Kim HW, Oh JE, Park HS (2011) Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci Total Environ 409(20):4351–4360

    Article  CAS  Google Scholar 

  • Buser HR, Poiger T, Müller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33(15):2529–2535

    Article  CAS  Google Scholar 

  • Chakraborty S, De S, DasGupta S, Basu JK (2005) Adsorption study for the removal of a basic dye: experimental and modeling. Chemosphere 58(8):1079–1086

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresource Technol 97(9):1061–1085

    Article  CAS  Google Scholar 

  • Dąbrowski A, Podkościelny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon: a critical review. Chemosphere 58(8):1049–1070

    Article  Google Scholar 

  • Daughton C, Ternes T (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Persp 107(Suppl 6):906–942

    Article  Google Scholar 

  • Ebie K, Li F, Azuma Y, Yuasa A, Hagishita T (2001) Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water. Water Res 35(1):167–179

    Article  CAS  Google Scholar 

  • Eren E, Afsin B (2007) Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces. Dyes Pigments 73(2):162–167

    Article  CAS  Google Scholar 

  • Faria PCC, Órfão JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38(8):2043–2052

    Article  CAS  Google Scholar 

  • Ferreir JA, Martin-Neto L, Vaz CM, Regitano JB (2002) Sorption interactions between imazaquin and a humic acid extracted from a typical Brazilian oxisol. J Environ Qual 31(5):1665–1670

    Article  Google Scholar 

  • Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66(8):1494–1501

    Article  CAS  Google Scholar 

  • Gürses A, Karaca S, Doğar Ç, Bayrak R, Açıkyıldız M, Yalçın M (2004) Determination of adsorptive properties of clay/water system: methylene blue sorption. J Colloid Interface Sci 269(2):310–314

    Article  Google Scholar 

  • Heckmann LH, Helen AC, Hooper L, Connon R, Hutchinson TH, Maund SJ, Sibly RM (2007) Chronic toxicity of ibuprofen to Daphnia magna: effects on life history traits and population dynamics. Toxicol Lett 172(3):137–145

    Article  CAS  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2):334–342

    Article  CAS  Google Scholar 

  • Hurle KB, Freed VH (1972) Effect of electrolytes on the solubility of some 1, 3, 5-triazines and substituted ureas and their adsorption on soil. Weed Res 12(1):1–10

    Article  CAS  Google Scholar 

  • Kosmulski M, Maczka E, Jartych E, Rosenholm JB (2003) Synthesis and characterization of goethite and goethite–hematite composite: experimental study and literature survey. Adv Colloid Interface Sci 103(1):57–76

    Article  CAS  Google Scholar 

  • Kubilay Ş, Gürkan R, Savran A, Şahan T (2007) Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption 13(1):41–51

    Article  CAS  Google Scholar 

  • Kulshrestha P, Giese RF, Aga DS (2004) Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environ Sci Technol 38(15):4097–4105

    Article  CAS  Google Scholar 

  • Li L, Quinlivan PA, Knappe DRU (2002) Effects of activated carbon surface and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40(12):2085–2100

    Article  CAS  Google Scholar 

  • Mamba BB, Krause RW, Malefetse TJ, Sithole SP, Nkambule TI (2009) Humic acid as a model for natural organic matter (NOM) in the removal of odorants from water by cyclodextrin polyurethanes. Water SA 35(1):117–120

    CAS  Google Scholar 

  • Melillo M, Gun’ko VM, Tennison SR, Mikhalovska LI, Phillips GJ, Davies JG (2004) Structural characteristics of activated carbons and ibuprofen adsorption affected by Bovine serum albumin. Langmuir 20(7):2837–2851

    Article  CAS  Google Scholar 

  • Mestre AS, Pires J, Nogueira JMF, Carvalho AP (2007) Activated carbons for the adsorption of ibuprofen. Carbon 45(10):1979–1988

    Article  CAS  Google Scholar 

  • Mestre AS, Pires J, Nogueira JMF, Parra JB, Carvalho AP, Ania CO (2009) Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure. Bioresour Technol 100(5):1720–1726

    Article  CAS  Google Scholar 

  • Mohanty K, Das D, Biswas MN (2006) Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater. Adsorption 12(2):119–132

    Article  CAS  Google Scholar 

  • Parolo ME, Savini MC, Vallés JM, Baschini MT, Avena MJ (2008) Tetracycline adsorption on montmorillonite: pH and ionic strength effects. Appl Clay Sci 40(1–4):179–186

    Article  CAS  Google Scholar 

  • Pomati F, Netting AG, Calamari D, Neilan BA (2004) Effects of erythromycin and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquat Toxicol 67(4):387–396

    Article  CAS  Google Scholar 

  • Ra JS, Oh SY, Lee BC, Kim SD (2008) The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. Environ Int 34(2):184–192

    Article  CAS  Google Scholar 

  • Rashid MA, Buckley DE, Robertson KR (1972) Interactions of a marine humic acid with clay minerals and natural sediment. Geoderma 8:11–27

    Article  CAS  Google Scholar 

  • Saito T, Koopal LK, Van Riemsdijk WH, Nagasaki S, Tanaka S (2004) Adsorption of humic acid on goethite: Isotherms, charge adjustments, and potential profiles. Langmuir 20(3):689–700

    Article  CAS  Google Scholar 

  • Schulthess CP, Huang CP (1991) Humic and fulvic acid adsorption by silicon and aluminum oxide surfaces on clay minerals. Soil Sci Soc Am J 55(1):34–42

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, New York, pp 253–254

    Google Scholar 

  • Snyder SA, Adham S, Redding AM, Cannon FS, DeCarolis J, Oppenheimer J, Wert EC, Yoon Y (2007) Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 202(1–3):156–181

    Google Scholar 

  • Sparks DL (2003) Environmental soil chemistry, 2nd edn. Academic press, New York, p 60

    Google Scholar 

  • Stuart MA, Fleer GJ, Lyklema J, Norde W, Scheutjens JMHM (1991) Adsorption of ions, polyelectrolytes, and proteins. Adv Colloid Interface Sci 34:477–535

    Article  CAS  Google Scholar 

  • Sun H, Zhu D, Mao JD (2008) Sorption of polar and nonpolar aromatic compounds to two humic acids with varied structural heterogeneity. Environ Toxicol Chem 27(12):2449–2456

    Article  CAS  Google Scholar 

  • Ternes TA, Meisenheimer M, Mcdowell D, Sacher F, Brauch H-J, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):3855–3863

    Google Scholar 

  • Trenholm RA, Vanderford BJ, Holady JC, Rexing DJ, Snyder SA (2006) Broad range analysis of endocrine disruptors and pharmaceuticals using gas chromatography and liquid chromatography tandem mass spectrometry. Chemosphere 65(11):1990–1998

    Article  CAS  Google Scholar 

  • Vimonses V, Lei S, Jin B, Chow CWK, Saint C (2009) Adsorption of Congo red by three Australian kaolins. Appl Clay Sci 43(3–4):465–472

    Article  CAS  Google Scholar 

  • Wang SL, Tzoua YM, Lua YH, Sheng G (2007) Removal of 3-chlorophenol from water using rice-straw-based carbon. J Hazard Mater 147(1–2):313–318

    Article  CAS  Google Scholar 

  • Winker M, Faika D, Gulyas H, Otterpohl RA (2008) A comparison of human pharmaceutical concentrations in raw municipal wastewater and yellow water. Sci Total Environ 399(1–3):96–104

    CAS  Google Scholar 

  • Zohra B, Aicha K, Fatima S, Nourredine B, Zoubir D (2008) Adsorption of Direct Red 2 on bentonite modified by cetyltrimethylammonium bromide. Chem Eng J 136(2–3):295–305

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by University of Ulsan in South Korea. SKB thankfully acknowledges the Brain Korea-21 Post-Doctoral fellowship from the Ministry of Education, Science and Technology through the Environmental Engineering Program at the University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behera, S.K., Oh, S.Y. & Park, H.S. Sorptive removal of ibuprofen from water using selected soil minerals and activated carbon. Int. J. Environ. Sci. Technol. 9, 85–94 (2012). https://doi.org/10.1007/s13762-011-0020-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-011-0020-8

Keywords

Navigation