Skip to main content

Advertisement

Log in

Identification of a novel missense c.386G > A variant in a boy with the POMGNT1-related muscular dystrophy-dystroglycanopathy

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Muscular dystrophy-dystroglycanopathies are autosomal recessive neurologic disorders, caused by homozygous or compound heterozygous mutations in the POMGNT1 gene-encoding protein O-mannose beta-1,2-N-acetylglucosaminyl transferase. This type of muscular dystrophy is characterized by early-onset muscle weakness, gait ataxia, microcephaly, and developmental delay.We performed whole-exome sequencing to detect the disease-causing variants in a 4 year-old boy. Afterwards, Sanger sequencing was performed to confirm the detected variant in the patient and his family. We evaluated a 4 year-old Iranian boy presented with delayed speech and language development, gait ataxia, global developmental delay, motor delay, neurodevelopmental delay, postnatal microcephaly and strabismus. His parents were first cousins, and the mother had a history of spontaneous abortion. In this study, we report a novel missense c.386G > A; p.(Arg129Gln) variant in the POMGNT1 gene which was confirmed by Sanger sequencing in the patient and segregated with the disease in the family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Human variant and pertinent phenotypes have been reported to ClinVar (Accession number: SCV001251175).

References

  1. Mercuri E, Muntoni F (2013) Muscular dystrophies. The Lancet 381(9869):845–860

    CAS  Google Scholar 

  2. Zamani G et al (2020) The first comprehensive cohort of the duchenne muscular dystrophy in iranian population: mutation spectrum of 314 patients and identifying two novel nonsense mutations. J MolNeurosci 70:1–9

    Google Scholar 

  3. Zamani G et al (2016) The quality of life in boys with Duchenne muscular dystrophy. NeuromusculDisord 26(7):423–427

    Google Scholar 

  4. Wang ET et al (2019) Transcriptome alterations in myotonic dystrophy skeletal muscle and heart. Hum Mol Genet 28(8):1312–1321

    CAS  PubMed  Google Scholar 

  5. Zampatti S et al (2019) Facioscapulohumeral muscular dystrophy (FSHD) molecular diagnosis: from traditional technology to the NGS era. Neurogenetics 20(2):57–64

    CAS  PubMed  Google Scholar 

  6. Mendell JR, Rodino-Klapac LR, Walker C (2019) Gene therapy clinical trials for duchenne and limb girdle muscular dystrophies: lessons learned, in muscle gene therapy. Springer, Cham, pp 709–725

    Google Scholar 

  7. Scaglioni D et al (2019) P. 145Optimisation of a high–throughput digital script for multiplexed immunofluorescent analysis of sarcolemmaldystrophin-associated protein complex (DPC) and myofibre regeneration in entire transverse sections of muscle biopsies in Duchenne muscular dystrophy. NeuromusculDisord 29:90

    Google Scholar 

  8. Xie Z et al (2019) Clinical and genetic spectrum of sarcoglycanopathies in a large cohort of Chinese patients. Orphanet J Rare Dis 14(1):43

    PubMed  PubMed Central  Google Scholar 

  9. Taniguchi-Ikeda M et al (2016) Mechanistic aspects of the formation of α-dystroglycan and therapeutic research for the treatment of α-dystroglycanopathy: a review. Mol Asp Med 51:115–124

    CAS  Google Scholar 

  10. Diesen C et al (2004) POMGnT1 mutation and phenotypic spectrum in muscle-eye-brain disease. J Med Genet 41(10):e115–e115

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Peiris TJ et al (2018) Congenital muscular dystrophy-dystroglycanopathy, type A, featuring bilateral retinal dysplasia and vertical angle kappa. J Am AssocPediatrOphthalmol Strabismus 22(3):242-244.e1

    Google Scholar 

  12. Qu H-Q et al (2019) Application of ACMG criteria to classify variants in the human gene mutation database. J Hum Genet 64(11):1091–1095

    CAS  PubMed  Google Scholar 

  13. Brown J, Pirrung M, McCue LA (2017) FQC Dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics 33(19):3137–3139

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Langdon WB (2015) Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min 8(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    PubMed  PubMed Central  Google Scholar 

  16. Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192

    PubMed  Google Scholar 

  17. Koboldt DC et al (2009) VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25(17):2283–2285

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren S, Bertels K, Al-Ars Z (2018) Efficient acceleration of the pair-hmms forward algorithm for gatkhaplotypecaller on graphics processing units. EvolutBioinform 14:1176934318760543

    Google Scholar 

  19. Mi H et al (2017) PANTHER version 11: expanded annotation data from gene ontology and reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45(D1):D183–D189

    CAS  PubMed  Google Scholar 

  20. Zuberi K et al (2013) GeneMANIA prediction server 2013 update. Nucleic Acids Res 41(W1):W115–W122

    PubMed  PubMed Central  Google Scholar 

  21. McLaren W et al (2016) Theensembl variant effect predictor. Genome Biol 17(1):122

    PubMed  PubMed Central  Google Scholar 

  22. Ma X et al (2015) Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products. Mol Plant 8(8):1285–1287

    CAS  PubMed  Google Scholar 

  23. Kaya E et al (2019) Spatial data analysis with R programming for environment. Hum Ecol Risk Assess Int J 25(6):1521–1530

    CAS  Google Scholar 

  24. Yang H, Robinson PN, Wang K (2015) Phenolyzer: phenotype-based prioritization of candidate genes for human diseases. Nat Methods 12(9):841–843

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–423

    PubMed  PubMed Central  Google Scholar 

  26. Hohenester E (2019) Laminin G-like domains: dystroglycan-specific lectins. CurrOpinStructBiol 56:56–63

    CAS  Google Scholar 

  27. Endo T (2019) Mammalian O-mannosylglycans: Biochemistry and glycopathology. Proc Japan AcadSer B 95(1):39–51

    CAS  Google Scholar 

  28. Lindenmaier LB et al (2019) Dystroglycan is a scaffold for extracellular axon guidance decisions. Elife 8:e42143

    PubMed  PubMed Central  Google Scholar 

  29. Sudo A et al (2018) Temporal requirement of dystroglycan glycosylation during brain development and rescue of severe cortical dysplasia via gene delivery in the fetal stage. Hum Mol Genet 27(7):1174–1185

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuwabara N et al (2016) Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan. ProcNatlAcadSci 113(33):9280–9285

    CAS  Google Scholar 

  31. Xu C et al (2020) N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis 9(1):4

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiong H et al (2006) Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of α-dystroglycan. BiochemBiophys Res Commun 350(4):935–941

    CAS  Google Scholar 

  33. Akasaka-Manya K et al (2004) Structure–function analysis of human protein O-linked mannose β1, 2-N-acetylglucosaminyltransferase 1, POMGnT1. BiochemBiophys Res Commun 320(1):39–44

    CAS  Google Scholar 

  34. Borisovna KO et al (2019) Compound heterozygous POMGNT1 mutations leading to muscular dystrophy-dystroglycanopathy type A3: a case report. BMC Pediatr 19(1):1–8

    Google Scholar 

  35. Xu M et al (2016) Mutations in POMGNT1 cause non-syndromic retinitis pigmentosa. Hum Mol Genet 25(8):1479–1488

    PubMed  PubMed Central  Google Scholar 

  36. Jiao H et al (2013) Novel POMGnT1 mutations cause muscle-eye-brain disease in Chinese patients. Mol Genet Genom 288(7–8):297–308

    CAS  Google Scholar 

  37. Biancheri R et al (2006) POMGnT1 mutations in congenital muscular dystrophy: genotype-phenotype correlation and expanded clinical spectrum. Arch Neurol 63(10):1491–1495

    PubMed  Google Scholar 

  38. Saredi S et al (2012) Novel POMGNT1 point mutations and intragenic rearrangements associated with muscle-eye-brain disease. J NeurolSci 318(1–2):45–50

    CAS  Google Scholar 

  39. Taniguchi K et al (2003) Worldwide distribution and broader clinical spectrum of muscle–eye–brain disease. Hum Mol Genet 12(5):527–534

    CAS  PubMed  Google Scholar 

  40. Yiş U et al (2014) Clinical, radiological, and genetic survey of patients with muscle-eye-brain disease caused by mutations in POMGNT1. PediatrNeurol 50(5):491–497

    Google Scholar 

  41. Capriotti E, Fariselli P, Casadio R (2005) I-Mutant2 0: predicting stability changes upon mutation from the protein sequence or structure. Nucl Acids Res 33(2):W306–W310

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Adzhubei I, Jordan DM, Sunyaev SR (2013) Predicting functional effect of human missense mutations using PolyPhen-2. CurrProtoc Hum Genet 76(1):7.20.1-7.20.41

    Google Scholar 

  43. Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073

    CAS  PubMed  Google Scholar 

  44. Musso F (2011) A stochastic version of the Eigen model. Bull Math Biol 73(1):151–180

    PubMed  Google Scholar 

  45. Ioannidis NM et al (2016) REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 99(4):877–885

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all participants in this research. The authors are especially thankful to the patient and his parents who took part in this study and also the personnel of the DeNA laboratory (https://dna-lab.ir/) for supporting us in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Garshasbi.

Ethics declarations

Conflict of interest

There is no conflict of interest for any of the authors.

Ethical standard statement

The study was approved by the local ethics committee of Tarbiat Modares University, Tehran, Iran (Ethics ID: IR.MODARES.REC.1399.080) and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, P., Daneshmand, M.A., Mahdieh, N. et al. Identification of a novel missense c.386G > A variant in a boy with the POMGNT1-related muscular dystrophy-dystroglycanopathy. Acta Neurol Belg 121, 143–151 (2021). https://doi.org/10.1007/s13760-020-01527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01527-8

Keywords

Navigation