Skip to main content

Advertisement

Log in

Nutrition and Metabolic Profiles in the Natural History of Dementia: Recent Insights from Systems Biology and Life Course Epidemiology

  • Cardiovascular Disease (JHY Wu, Section Editor)
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Worldwide, approximately 50 million people have dementia (mostly Alzheimer’s disease). Dementia results from a multicomponent pathophysiology that follows complex dynamics over many years before symptoms become apparent. Nutrition may represent a target of choice for the primary prevention of dementia; however, there is still no firm answer on how to prevent dementia efficiently.

We provide a broad overview of recent studies leveraging system biology and life-long epidemiology to address the multidimensionality and dynamical patterns underlying dementia and improve knowledge on the link between nutrition, cardiometabolic health and dementia risk.

Recent Findings

The aging of reference population-based cohort studies, the increasing availability of cutting-edge biomarkers (e.g., brain imaging, metabolomics) and the refinement of statistical tools to model complex exposures and dynamical health outcomes have yielded substantial progress in the understanding of dementia.

Summary

Systems biology coupled with life-course epidemiology will pave the way toward novel precision nutrition approaches for prevention and management of dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Grasset L, Brayne C, Joly P, Jacqmin-Gadda H, Peres K, Foubert-Samier A, et al. Trends in dementia incidence: evolution over a 10-year period in France. Alzheimers Dement. 2016;12:272–80.

    Article  PubMed  Google Scholar 

  2. Satizabal CL, Beiser AS, Chouraki V, Chêne G, Dufouil C, Seshadri S. Incidence of dementia over three decades in the Framingham Heart Study. N Engl J Med. 2016;374:523–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jones DS, Greene JA. Is dementia in decline? Historical trends and future trajectories. N Engl J Med. 2016;374:507–9.

    Article  CAS  PubMed  Google Scholar 

  4. World Alzheimer Report 2016 [Internet]. 2016 [cited 2017 May 16]. Available from: https://www.alz.co.uk/research/world-report-2016

  5. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–734.

    Article  PubMed  Google Scholar 

  6. Saver JL, Cushman M. Striving for ideal cardiovascular and brain health: it is never too early or too late. JAMA. 2018;320:645–7.

    Article  PubMed  Google Scholar 

  7. Andrieu S, Coley N, Lovestone S, Aisen PS, Vellas B. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. The Lancet Neurology. 2015;14:926–44.

    Article  PubMed  Google Scholar 

  8. Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. The Lancet Neurology. 2018;17:1006–15.

    Article  PubMed  Google Scholar 

  9. Samieri C, Perier M-C, Gaye B, Proust-Lima C, Helmer C, Dartigues J-F, et al. Association of cardiovascular health level in older age with cognitive decline and incident dementia. JAMA. 2018;320:657–64.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scheltens P, Blennow K, Breteler MMB, de Strooper B, Frisoni GB, Salloway S, et al. Alzheimer’s disease. Lancet. 2016;388:505–17.

    Article  CAS  PubMed  Google Scholar 

  11. Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X, et al. Metabolic network failures in Alzheimer’s disease: a biochemical road map. Alzheimers Dement. 2017;13:965–84.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Tynkkynen J, Chouraki V, van der Lee SJ, Hernesniemi J, Yang Q, Li S, et al. Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: a prospective study in eight cohorts. Alzheimers Dement. 2018;14:723–33 Largest NMR-based targeted metabolomics study in preclinical dementia to date, combining a meta-analysis of four discovery cohorts and separate replication on four independant cohorts (>22,000 participant followed over 10 years).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chouraki V, Preis SR, Yang Q, Beiser A, Li S, Larson MG, et al. Association of amine biomarkers with incident dementia and Alzheimer’s disease in the Framingham Study. Alzheimers Dement. 2017;13:1327–36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med. 2014;20:415–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fiandaca MS, Zhong X, Cheema AK, Orquiza MH, Chidambaram S, Tan MT, et al. Plasma 24-metabolite panel predicts preclinical transition to clinical stages of Alzheimer’s disease. Front Neurol. 2015;6:237.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Casanova R, Varma S, Simpson B, Min K, An Y, Saldana S, et al. Blood metabolite markers of preclinical Alzheimer’s disease in two longitudinally followed cohorts of older individuals. Alzheimers Dement. 2016;12:815–22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li D, Misialek JR, Boerwinkle E, Gottesman RF, Sharrett AR, Mosley TH, et al. Prospective associations of plasma phospholipids and mild cognitive impairment/dementia among African Americans in the ARIC Neurocognitive Study. Alzheimers Dement (Amst). 2017;6:1–10.

    Google Scholar 

  18. Proitsi P, Kuh D, Wong A, Maddock J, Bendayan R, Wulaningsih W, et al. Lifetime cognition and late midlife blood metabolites: findings from a British birth cohort. Transl Psychiatry. 2018;8:203.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Varma VR, Oommen AM, Varma S, Casanova R, An Y, Andrews RM, et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: a targeted metabolomics study. PLoS Med. 2018;15:e1002482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Lee SJ, Teunissen CE, Pool R, Shipley MJ, Teumer A, Chouraki V, et al. Circulating metabolites and general cognitive ability and dementia: evidence from 11 cohort studies. Alzheimers Dement. 2018;14:707–22.

    Article  PubMed  Google Scholar 

  21. Dorninger F, Moser AB, Kou J, Wiesinger C, Forss-Petter S, Gleiss A, et al. Alterations in the plasma levels of specific choline phospholipids in Alzheimer’s disease mimic accelerated aging. J Alzheimers Dis. 2018;62:841–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mielke MM, Bandaru VVR, Haughey NJ, Rabins PV, Lyketsos CG, Carlson MC. Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol Aging. 2010;31:17–24.

    Article  CAS  PubMed  Google Scholar 

  23. Mielke MM, Bandaru VVR, Haughey NJ, Xia J, Fried LP, Yasar S, et al. Serum ceramides increase the risk of Alzheimer disease. Neurology. 2012;79:633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mielke MM, Haughey NJ, Han D, An Y, Bandaru VVR, Lyketsos CG, et al. The association between plasma ceramides and sphingomyelins and risk of Alzheimer’s disease differs by sex and APOE in the Baltimore longitudinal study of aging. J Alzheimers Dis. 2017;60:819–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bressler J, Yu B, Mosley TH, Knopman DS, Gottesman RF, Alonso A, et al. Metabolomics and cognition in African American adults in midlife: the atherosclerosis risk in communities study. Transl Psychiatry. 2017;7:e1173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Orešič M, Hyötyläinen T, Herukka S-K, Sysi-Aho M, Mattila I, Seppänan-Laakso T, et al. Metabolome in progression to Alzheimer’s disease. Transl Psychiatry. 2011;1:tp201155.

    Article  Google Scholar 

  27. Rousseau M, Guénard F, Garneau V, Allam-Ndoul B, Lemieux S, Pérusse L, et al. Associations between dietary protein sources, plasma BCAA and short-chain acylcarnitine levels in adults. Nutrients. 2019;11.

  28. White PJ, Newgard CB. Branched-chain amino acids in disease. Science. 2019;363:582–3.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao X, Han Q, Liu Y, Sun C, Gang X, Wang G. The relationship between branched-chain amino acid related metabolomic signature and insulin resistance: a systematic review. J Diabetes Res. 2016;2016:2794591.

    PubMed  PubMed Central  Google Scholar 

  30. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, et al. Defeating Alzheimer’s disease and other dementias: a priority for European science and society. The Lancet Neurology. 2016;15:455–532.

    Article  PubMed  Google Scholar 

  32. Kumari N, Prentice H, Wu J-Y. Taurine and its neuroprotective role. In: El Idrissi A, L’Amoreaux WJ, editors. Taurine 8. New York: Springer; 2013. p. 19–27.

    Chapter  Google Scholar 

  33. Jang H, Lee S, Choi SL, Kim HY, Baek S, Kim Y. Taurine directly binds to oligomeric amyloid-β and recovers cognitive deficits in Alzheimer model mice. Adv Exp Med Biol. 2017;975(Pt 1):233–41.

    Article  CAS  PubMed  Google Scholar 

  34. Wong MW, Braidy N, Poljak A, Sachdev PS. The application of lipidomics to biomarker research and pathomechanisms in Alzheimer’s disease. Curr Opin Psychiatry. 2017;30:136–44.

    Article  PubMed  Google Scholar 

  35. Zarrouk A, Debbabi M, Bezine M, Karym EM, Badreddine A, Rouaud O, et al. Lipid biomarkers in Alzheimer’s disease. Curr Alzheimer Res. 2018;15:303–12.

    Article  CAS  PubMed  Google Scholar 

  36. Ma C, Yin Z, Zhu P, Luo J, Shi X, Gao X. Blood cholesterol in late-life and cognitive decline: a longitudinal study of the Chinese elderly. Mol Neurodegener. 2017;12:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schilling S, Tzourio C, Soumaré A, Kaffashian S, Dartigues J-F, Ancelin M-L, et al. Differential associations of plasma lipids with incident dementia and dementia subtypes in the 3C study: a longitudinal, population-based prospective cohort study. PLoS Med. 2017;14:e1002265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koch M, Jensen MK. HDL-cholesterol and apolipoproteins in relation to dementia. Curr Opin Lipidol. 2016;27:76–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He Y, Kothari V, Bornfeldt KE. High-density lipoprotein function in cardiovascular disease and diabetes mellitus. Arterioscler Thromb Vasc Biol. 2018;38:e10–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol. 1999;58:740–7.

    Article  CAS  PubMed  Google Scholar 

  41. Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci. 2014;15:771–85.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Chen J, Qiu J, Li Y, Wang J, Jiao J. Intakes of fish and polyunsaturated fatty acids and mild-to-severe cognitive impairment risks: a dose-response meta-analysis of 21 cohort studies. Am J Clin Nutr. 2016;103:330–40.

    Article  CAS  PubMed  Google Scholar 

  43. Burdge GC, Calder PC. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev. 2005;45:581–97.

    Article  CAS  PubMed  Google Scholar 

  44. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tolppanen A-M, Ngandu T, Kåreholt I, Laatikainen T, Rusanen M, Soininen H, et al. Midlife and late-life body mass index and late-life dementia: results from a prospective population-based cohort. J Alzheimers Dis. 2014;38:201–9.

    Article  PubMed  Google Scholar 

  46. Qiu C, Winblad B, Fratiglioni L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 2005;4:487–99.

    Article  PubMed  Google Scholar 

  47. Samieri C. Epidemiology and risk factors of Alzheimer’s disease: a focus on diet. Biomarkers for Preclinical Alzheimer’s Disease | Robert G Perneczky | Springer. 2018;137:15–42.

  48. Féart C, Samieri C, Rondeau V, Amieva H, Portet F, Dartigues J-F, et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA. 2009;302:638–48.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66:216–25.

    PubMed  PubMed Central  Google Scholar 

  50. Tangney CC, Kwasny MJ, Li H, Wilson RS, Evans DA, Morris MC. Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population. Am J Clin Nutr. 2011;93:601–7.

    Article  CAS  PubMed  Google Scholar 

  51. Trichopoulou A, Kyrozis A, Rossi M, Katsoulis M, Trichopoulos D, La Vecchia C, et al. Mediterranean diet and cognitive decline over time in an elderly Mediterranean population. Eur J Nutr. 2015;54:1311–21.

    Article  CAS  PubMed  Google Scholar 

  52. Scarmeas N, Stern Y, Mayeux R, Luchsinger JA. Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol. 2006;63:1709–17.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11:1007–14.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lourida I, Soni M, Thompson-Coon J, Purandare N, Lang IA, Ukoumunne OC, et al. Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology. 2013;24:479–89.

    Article  PubMed  Google Scholar 

  55. Singh B, Parsaik AK, Mielke MM, Erwin PJ, Knopman DS, Petersen RC, et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;39:271–82.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Samieri C, Okereke OI, E Devore E, Grodstein F. Long-term adherence to the Mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J Nutr. 2013;143:493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. • Akbaraly TN, Singh-Manoux A, Dugravot A, Brunner EJ, Kivimäki M, Sabia S. Association of midlife diet with subsequent risk for dementia. JAMA. 2019;321:957–68.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhu W, Wadley VG, Howard VJ, Hutto B, Blair SN, Hooker SP. Objectively measured physical activity and cognitive function in older adults. Med Sci Sports Exerc. 2017;49:47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  59. •• Guure CB, Ibrahim NA, Adam MB, Said SM. Impact of physical activity on cognitive decline, dementia, and its subtypes: meta-analysis of prospective studies. Biomed Res Int. 2017;2017:9016924 A meta-analysis of the potential benefits of physical activity on the risk of dementia and its subtypes, based on longitudinal studies with follow-up ≥28 years and 117,410 individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morgan GS, Gallacher J, Bayer A, Fish M, Ebrahim S, Ben-Shlomo Y. Physical activity in middle-age and dementia in later life: findings from a prospective cohort of men in Caerphilly, South Wales and a meta-analysis. J Alzheimers Dis. 2012;31:569–80.

    Article  PubMed  Google Scholar 

  61. Gross AL, Lu H, Meoni L, Gallo JJ, Schrack JA, Sharrett AR. Physical activity in midlife is not associated with cognitive health in later life among cognitively normal older adults. J Alzheimers Dis. 2017;59:1349–58.

    Article  PubMed  Google Scholar 

  62. Iso-Markku P, Waller K, Kujala UM, Kaprio J. Physical activity and dementia: long-term follow-up study of adult twins. Ann Med. 2015;47:81–7.

    Article  PubMed  Google Scholar 

  63. Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39:3–11.

    Article  CAS  PubMed  Google Scholar 

  64. Scarmeas N, Luchsinger JA, Schupf N, Brickman AM, Cosentino S, Tang MX, et al. Physical activity, diet, and risk of Alzheimer disease. JAMA. 2009;302:627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rovio S, Kåreholt I, Helkala E-L, Viitanen M, Winblad B, Tuomilehto J, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet Neurol. 2005;4:705–11.

    Article  PubMed  Google Scholar 

  66. Tolppanen A-M, Solomon A, Kulmala J, Kåreholt I, Ngandu T, Rusanen M, et al. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimers Dement. 2015;11:434–443.e6.

    Article  PubMed  Google Scholar 

  67. Power MC, Rawlings A, Sharrett AR, Bandeen-Roche K, Coresh J, Ballantyne CM, et al. Association of midlife lipids with 20-year cognitive change: a cohort study. Alzheimers Dement. 2018;14:167–77.

    Article  PubMed  Google Scholar 

  68. • Gottesman RF, Albert MS, Alonso A, Coker LH, Coresh J, Davis SM, et al. Associations between midlife vascular risk factors and 25-year incident dementia in the Atherosclerosis Risk in Communities (ARIC) cohort. JAMA Neurol. 2017;74:1246–54 This prospective cohort study of 15,744 individuals showed that diabetes, prehypertension, and hypertension in midlife were associated with increased risk of dementia in black and white ARIC Study participants.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12:e426–37.

    Article  CAS  PubMed  Google Scholar 

  70. Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer’s disease risk with obesity, diabetes, and related disorders. Biol Psychiatry. 2010;67:505–12.

    Article  PubMed  Google Scholar 

  71. Beydoun MA, Beydoun HA, Wang Y. Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev. 2008;9:204–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Loef M, Walach H. Midlife obesity and dementia: meta-analysis and adjusted forecast of dementia prevalence in the United States and China. Obesity (Silver Spring). 2013;21:E51–5.

    Article  Google Scholar 

  73. Gustafson DR, Bäckman K, Joas E, Waern M, Östling S, Guo X, et al. 37 years of body mass index and dementia: observations from the prospective population study of women in Gothenburg, Sweden. J Alzheimers Dis. 2012;28:163–71.

    Article  PubMed  Google Scholar 

  74. • Qizilbash N, Gregson J, Johnson ME, Pearce N, Douglas I, Wing K, et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol. 2015;3:431–6.

    Article  PubMed  Google Scholar 

  75. Pedditzi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45:14–21.

    Article  PubMed  Google Scholar 

  76. Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia: a review. Curr Hypertens Rep. 2017;19:24.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Anstey KJ, Ashby-Mitchell K, Peters R. Updating the evidence on the association between serum cholesterol and risk of late-life dementia: review and meta-analysis. J Alzheimers Dis. 2017;56:215–28.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Xu W, Qiu C, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Mid- and late-life diabetes in relation to the risk of dementia: a population-based twin study. Diabetes. 2009;58:71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schnaider Beeri M, Goldbourt U, Silverman JM, Noy S, Schmeidler J, Ravona-Springer R, et al. Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology. 2004;63:1902–7.

    Article  CAS  PubMed  Google Scholar 

  80. Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern Med J. 2012;42:484–91.

    Article  CAS  PubMed  Google Scholar 

  81. Crane PK, Walker R, Hubbard RA, Li G, Nathan DM, Zheng H, et al. Glucose levels and risk of dementia. N Engl J Med. 2013;369:540–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. J Diabetes Investig. 2013;4:640–50.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cooper C, Sommerlad A, Lyketsos CG, Livingston G. Modifiable predictors of dementia in mild cognitive impairment: a systematic review and meta-analysis. Am J Psychiatry. 2015;172:323–34.

    Article  PubMed  Google Scholar 

  84. Wilson RS, Arnold SE, Schneider JA, Boyle PA, Buchman AS, Bennett DA. Olfactory impairment in presymptomatic Alzheimer’s disease. Ann N Y Acad Sci. 2009;1170:730–5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Pérès K, Helmer C, Amieva H, Orgogozo J-M, Rouch I, Dartigues J-F, et al. Natural history of decline in instrumental activities of daily living performance over the 10 years preceding the clinical diagnosis of dementia: a prospective population-based study. J Am Geriatr Soc. 2008;56:37–44.

    Article  PubMed  Google Scholar 

  86. Skoog I, Lernfelt B, Landahl S, Palmertz B, Andreasson LA, Nilsson L, et al. 15-year longitudinal study of blood pressure and dementia. Lancet. 1996;347:1141–5.

    Article  CAS  PubMed  Google Scholar 

  87. Qiu C, von Strauss E, Fastbom J, Winblad B, Fratiglioni L. Low blood pressure and risk of dementia in the Kungsholmen Project: a 6-year follow-up study. Arch Neurol. 2003;60:223–8.

    Article  PubMed  Google Scholar 

  88. Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28:75–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. •• Singh-Manoux A, Dugravot A, Shipley M, Brunner EJ, Elbaz A, Sabia S, et al. Obesity trajectories and risk of dementia: 28 years of follow-up in the Whitehall II Study. Alzheimers Dement. 2018;14:178–86 This prospective cohort study described the trajectories of body mass index in 28 years preceding dementia diagnosis. Trajectories of future demented were characterized by obesity in midlife and weight loss many years preceding diagnosis.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sabia S, Dugravot A, Dartigues J-F, Abell J, Elbaz A, Kivimäki M, et al. Physical activity, cognitive decline, and risk of dementia: 28 year follow-up of Whitehall II cohort study. BMJ. 2017;357:j2709.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wagner M, Dartigues J-F, Samieri C, Proust-Lima C. Modeling risk-factor trajectories when measurement tools change sequentially during follow-up in cohort studies: application to dietary habits in prodromal dementia. Am J Epidemiol. 2018;187:845–54.

    Article  PubMed  Google Scholar 

  92. Wagner M, Helmer C, Tzourio C, Berr C, Proust-Lima C, Samieri C. Evaluation of the concurrent trajectories of cardiometabolic risk factors in the 14 years before dementia. JAMA Psychiatry. 2018;75:1033–42.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Butler M, Nelson VA, Davila H, Ratner E, Fink HA, Hemmy LS, et al. Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: a systematic review. Ann Intern Med. 2018;168:52.

    Article  PubMed  Google Scholar 

  94. Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14:653–66.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécilia Samieri.

Ethics declarations

Conflict of Interest

Sophie Lefèvre-Arbogast, Maude Wagner, Cécile Proust-Lima, and Cécilia Samieri declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiovascular Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefèvre-Arbogast, S., Wagner, M., Proust-Lima, C. et al. Nutrition and Metabolic Profiles in the Natural History of Dementia: Recent Insights from Systems Biology and Life Course Epidemiology. Curr Nutr Rep 8, 256–269 (2019). https://doi.org/10.1007/s13668-019-00285-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-019-00285-1

Keywords

Navigation