Skip to main content

Advertisement

Log in

Transcriptomic analysis reveals tumor stage- or grade-dependent expression of miRNAs in serous ovarian cancer

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Ovarian cancer (OC) is the most lethal gynecological malignancy and cellular mechanisms regulating OC progression are not completely understood. miRNAs are involved in many signaling pathways which are critical for the progression of malignant tumors, including OC. In the present study, we aim to identify miRNAs whose expression change in a tumor stage- and/or grade-dependent manner in serous OC. Computational analysis was performed in R using The Cancer Genome Atlas miRNA dataset. Kaplan–Meier plots were constructed to compare the survival of patients with low and high expressions of identified miRNAs. We found that 91 and 90 miRNAs out of 799 are differentially expressed in terms of tumor stage and grade, respectively. miR-152, miR-375 and miR-204 were top three hits in terms of tumor stage; and similarly, miR-125b, miR-768-5p and -3p in terms of tumor grade. Among top 15 miRNAs whose expression most significantly changed between tumor stages, 66.7% were upregulated in late stage. However, 53.3% of top 15 miRNAs identified in terms of tumor grade were upregulated in high grade. 11 miRNAs are differentially expressed in terms of both tumor stage and grade. Expression changes of some of the top miRNAs were found to be associated with shorter survival in serous OC. Text mining analysis showed that most of these miRNAs have not been previously studied in the context of OC. Mechanistic studies of these miRNAs in OC progression, differentiation and metastasis will be of high importance to develop novel strategies for the treatment of serous ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Data used in the present study are available from The Cancer Genome Atlas (TCGA)—Ovarian Cancer project (https://portal.gdc.cancer.gov/projects/TCGA-OV). These data can be accessed using curatedOvarianData Bioconductor data package in R statistical computing language as done in this study. GEO datasets can be accessed in https://www.ncbi.nlm.nih.gov/geo/ and analyzed using GEO2R tool.

Code availability

R code written to analyze the data in the current study can be found in supplementary files as pdf and Rmarkdown documents. We provided all the R code to make this computational study completely reproducible by other researchers.

References

  1. Deb B, Uddin A, Chakraborty S. miRNAs and ovarian cancer: an overview. J Cell Physiol. 2018;233(5):3846–54. https://doi.org/10.1002/jcp.26095 (Epub 2017 Aug 25 PMID: 28703277).

    Article  CAS  PubMed  Google Scholar 

  2. Berkel C, Kucuk B, Usta M, Yilmaz E, Cacan E. The effect of Olaparib and Bortezomib combination treatment on ovarian cancer cell lines. Eur J Biol. 2020. https://doi.org/10.26650/EurJBiol.2020.0035.

    Article  Google Scholar 

  3. Berkel C, Cacan E. In silico analysis of DYNLL1 expression in ovarian cancer chemoresistance. Cell Biol Int. 2020;44(8):1598–605. https://doi.org/10.1002/cbin.11352 (Epub 2020 Apr 13 PMID: 32208526).

    Article  CAS  PubMed  Google Scholar 

  4. Della Pepa C, Tonini G, Pisano C, Di Napoli M, Cecere SC, Tambaro R, Facchini G, Pignata S. Ovarian cancer standard of care: are there real alternatives? Chin J Cancer. 2015;34(1):17–27. https://doi.org/10.5732/cjc.014.10274 (PMID: 25556615; PMCID: PMC4302086).

    Article  CAS  PubMed  Google Scholar 

  5. Aboutalebi H, Bahrami A, Soleimani A, Saeedi N, Rahmani F, Khazaei M, Fiuji H, Shafiee M, Ferns GA, Avan A, Hassanian SM. The diagnostic, prognostic and therapeutic potential of circulating microRNAs in ovarian cancer. Int J Biochem Cell Biol. 2020;124:105765. https://doi.org/10.1016/j.biocel.2020.105765 (Epub 2020 May 17 PMID: 32428568).

    Article  CAS  PubMed  Google Scholar 

  6. Berkel C, Cacan E. GAB2 and GAB3 are expressed in a tumor stage-, grade- and histotype-dependent manner and are associated with shorter progression-free survival in ovarian cancer. J Cell Commun Signal. 2020. https://doi.org/10.1007/s12079-020-00582-3 (Epub ahead of print. PMID: 32888136).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A, Siegel RL. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284–96. https://doi.org/10.3322/caac.21456 (Epub 2018 May 29. PMID: 29809280; PMCID: PMC6621554).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Uppal A, Ferguson MK, Posner MC, Hellman S, Khodarev NN, Weichselbaum RR. Towards a molecular basis of oligometastatic disease: potential role of micro-RNAs. Clin Exp Metastasis. 2014;31(6):735–48. https://doi.org/10.1007/s10585-014-9664-3 (Epub 2014 Jun 27. PMID: 24968866; PMCID: PMC4138440).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;3(9):402. https://doi.org/10.3389/fendo.2018.00402.PMID:30123182;PMCID:PMC6085463.

    Article  Google Scholar 

  10. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24. https://doi.org/10.1038/nrm3838 (Epub 2014 Jul 16 PMID: 25027649).

    Article  CAS  PubMed  Google Scholar 

  11. Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the seed supports MicroRNA targeting specificity. Mol Cell. 2016;64(2):320–33. https://doi.org/10.1016/j.molcel.2016.09.004 (Epub 2016 Oct 6. PMID: 27720646; PMCID: PMC5074850).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen SN, Chang R, Lin LT, Chern CU, Tsai HW, Wen ZH, Li YH, Li CJ, Tsui KH. MicroRNA in ovarian cancer: biology, pathogenesis, and therapeutic opportunities. Int J Environ Res Public Health. 2019;16(9):1510. https://doi.org/10.3390/ijerph16091510 (PMID: 31035447; PMCID: PMC6539609).

    Article  CAS  PubMed Central  Google Scholar 

  13. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16(3):203–22. https://doi.org/10.1038/nrd.2016.246 (Epub 2017 Feb 17 PMID: 28209991).

    Article  CAS  PubMed  Google Scholar 

  14. Huang W. MicroRNAs: biomarkers, diagnostics, and therapeutics. Methods Mol Biol. 2017;1617:57–67. https://doi.org/10.1007/978-1-4939-7046-9_4 (PMID: 28540676).

    Article  CAS  PubMed  Google Scholar 

  15. Liang H, Yu T, Han Y, Jiang H, Wang C, You T, Zhao X, Shan H, Yang R, Yang L, Shan H, Gu Y. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding miR-101-3p to regulate ZEB1 expression. Mol Cancer. 2018;17(1):119. https://doi.org/10.1186/s12943-018-0870-5 (PMID: 30098599; PMCID: PMC6087007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srivastava AK, Banerjee A, Cui T, Han C, Cai S, Liu L, Wu D, Cui R, Li Z, Zhang X, Xie G, Selvendiran K, Patnaik S, Karpf AR, Liu J, Cohn DE, Wang QE. Inhibition of miR-328–3p impairs cancer stem cell function and prevents metastasis in ovarian cancer. Cancer Res. 2019;79(9):2314–26. https://doi.org/10.1158/0008-5472.CAN-18-3668 (Epub 2019 Mar 20. PMID: 30894370; PMCID: PMC6777340).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen MW, Yang ST, Chien MH, Hua KT, Wu CJ, Hsiao SM, Lin H, Hsiao M, Su JL, Wei LH. The STAT3-miRNA-92-Wnt signaling pathway regulates spheroid formation and malignant progression in ovarian cancer. Cancer Res. 2017;77(8):1955–67. https://doi.org/10.1158/0008-5472.CAN-16-1115 (Epub 2017 Feb 16 PMID: 28209618).

    Article  CAS  PubMed  Google Scholar 

  18. Chen X, Mangala LS, Mooberry L, Bayraktar E, Dasari SK, Ma S, Ivan C, Court KA, Rodriguez-Aguayo C, Bayraktar R, Raut S, Sabnis N, Kong X, Yang X, Lopez-Berestein G, Lacko AG, Sood AK. Identifying and targeting angiogenesis-related microRNAs in ovarian cancer. Oncogene. 2019;38(33):6095–108. https://doi.org/10.1038/s41388-019-0862-y (Epub 2019 Jul 9. PMID: 31289363; PMCID: PMC7293105).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. https://doi.org/10.1038/nature10166 (Erratum in: Nature. 2012 Oct 11;490(7419):298. PMID:21720365; PMCID: PMC3163504).

    Article  CAS  Google Scholar 

  20. Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, Wang XV, Ahmadifar M, Birrer MJ, Parmigiani G, Huttenhower C, Waldron L. CuratedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database (Oxford). 2013;203:013. https://doi.org/10.1093/database/bat013 (PMID: 23550061; PMCID: PMC3625954).

    Article  CAS  Google Scholar 

  21. Bagnoli M, De Cecco L, Granata A, Nicoletti R, Marchesi E, Alberti P, Valeri B, Libra M, Barbareschi M, Raspagliesi F, Mezzanzanica D, Canevari S. Identification of a chrXq273 microRNA cluster associated with early relapse in advanced stage ovarian cancer patients. Oncotarget. 2011;2(12):1265–78. https://doi.org/10.18632/oncotarget.401 (PMID: 22246208; PMCID: PMC3282083).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vecchione A, Belletti B, Lovat F, Volinia S, Chiappetta G, Giglio S, Sonego M, Cirombella R, Onesti EC, Pellegrini P, Califano D, Pignata S, Losito S, Canzonieri V, Sorio R, Alder H, Wernicke D, Stoppacciaro A, Baldassarre G, Croce CM. A microRNA signature defines chemoresistance in ovarian cancer through modulation of angiogenesis. Proc Natl Acad Sci USA. 2013;110(24):9845–50. https://doi.org/10.1073/pnas.1305472110.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kassambara A. ggpubr: ‘ggplot2’ Based publication ready plots. R package version 0.3.0. 2020. https://CRAN.R-project.org/package=ggp. Accessed 10 Oct 2020.

  24. RStudio Team. RStudio: integrated development for R. RStudio, PBC, Boston, MA. 2020. http://www.rstudio.com/. Accessed 10 Oct 2020.

  25. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods. 2015;12(2):115–21. https://doi.org/10.1038/nmeth.3252 (PMID: 25633503; PMCID: PMC4509590).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–7. https://doi.org/10.1093/bioinformatics/btm254 (Epub 2007 May 12 PMID: 17496320).

    Article  CAS  PubMed  Google Scholar 

  27. Nagy Á, Lánczky A, Menyhárt O, Győrffy B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 2018;8(1):9227. https://doi.org/10.1038/s41598-018-27521-y (Erratum in: Sci Rep. 2018 Jul 26;8(1):11515. PMID: 29907753; PMCID: PMC6003936).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics. 2013;29(5):638–44. https://doi.org/10.1093/bioinformatics/btt014 (Epub 2013 Jan 16 PMID: 23325619).

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Han X, Wan Y, Zhang S, Zhao Y, Fan R, Cui Q, Zhou Y. TAM 2.0: tool for MicroRNA set analysis. Nucleic Acids Res. 2018;46(W1):W180–5. https://doi.org/10.1093/nar/gky509 (PMID: 29878154; PMCID: PMC6031048).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. R Core Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. https://www.R-project.org/. Accessed 10 Oct 2020.

  31. Wickham H, et al. Welcome to the tidyverse. J Open Source Softw. 2019. https://doi.org/10.2105/joss.01686.

    Article  Google Scholar 

  32. Iannone R, Cheng J, Schloerke B. gt: Easily create presentation-ready display tables. R package version 0.2.1. 2020. https://CRAN.R-project.org/package=gt. Accessed 10 Oct 2020.

  33. Hvitfeldt E et al. paletteer: Comprehensive collection of color palettes. R package version 1.2.0. 2020, https://CRAN.R-project.org/package=paletteer. Accessed 10 Oct 2020.

  34. Wickham H, Bryan J. readxl: read excel files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl. Accessed 10 Oct 2020.

  35. Ooms J. magick: Advanced graphics and image-processing in R. R package version 2.3. 2020. https://CRAN.R-project.org/package=magick. Accessed 10 Oct 2020.

  36. Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang W, Iannone R. rmarkdown: Dynamic documents for R. R package version 2.2. 2020. https://rmarkdown.rstudio.com. Accessed 10 Oct 2020.

  37. Xie Y. knitr: A general-purpose package for dynamic report generation in R. R package version 1.28. 2020. https://yihui.org/knitr/. Accessed 10 Oct 2020.

  38. Li LW, Xiao HQ, Ma R, Yang M, Li W, Lou G. miR-152 is involved in the proliferation and metastasis of ovarian cancer through repression of ERBB3. Int J Mol Med. 2018;41(3):1529–35. https://doi.org/10.3892/ijmm.2017.3324 (Epub 2017 Dec 15. PMID: 29286064; PMCID: PMC5819930).

    Article  CAS  PubMed  Google Scholar 

  39. Yang S, Yang R, Lin R, Si L. MicroRNA-375 inhibits the growth, drug sensitivity and metastasis of human ovarian cancer cells by targeting PAX2. J BUON. 2019;24(6):2341–6 (PMID: 31983104).

    PubMed  Google Scholar 

  40. Li Y, Chen L, Zhang B, Ohno Y, Hu H. miR-409–3p inhibits the proliferation and migration of human ovarian cancer cells by targeting Rab10. Cell Mol Biol (Noisy-le-grand). 2020;66(7):197–201 (PMID: 33287942).

    Article  Google Scholar 

  41. Zhu T, Gao W, Chen X, Zhang Y, Wu M, Zhang P, Wang S. A pilot study of circulating MicroRNA-125b as a diagnostic and prognostic biomarker for epithelial ovarian cancer. Int J Gynecol Cancer. 2017;27(1):3–10. https://doi.org/10.1097/IGC.0000000000000846 (PMID: 27636713; PMCID: PMC5181123).

    Article  PubMed  Google Scholar 

  42. Xie Z, Chen W, Chen Y, Wang X, Gao W, Liu Y. miR-768-3p is involved in the proliferation, invasion and migration of non-small cell lung carcinomas. Int J Oncol. 2017;51(5):1574–82. https://doi.org/10.3892/ijo.2017.4133 (Epub 2017 Sep 22 PMID: 29048613).

    Article  CAS  PubMed  Google Scholar 

  43. Shao L, Shen Z, Qian H, Zhou S, Chen Y. Knockdown of miR-629 inhibits ovarian cancer malignant behaviors by targeting testis-specific Y-like protein 5. DNA Cell Biol. 2017;36(12):1108–16. https://doi.org/10.1089/dna.2017.3904 (Epub 2017 Oct 3 PMID: 28972400).

    Article  CAS  PubMed  Google Scholar 

  44. Li C, Zhang Y, Zhao W, Cui S, Song Y. miR-153-3p regulates progression of ovarian carcinoma in vitro and in vivo by targeting MCL1 gene. J Cell Biochem. 2019;120(11):19147–58. https://doi.org/10.1002/jcb.29244 (Epub 2019 Jul 11 PMID: 31297886).

    Article  CAS  PubMed  Google Scholar 

  45. Yu X, Zhang X, Bi T, Ding Y, Zhao J, Wang C, Jia T, Han D, Guo G, Wang B, Jiang J, Cui S. MiRNA expression signature for potentially predicting the prognosis of ovarian serous carcinoma. Tumour Biol. 2013;34(6):3501–8. https://doi.org/10.1007/s13277-013-0928-3 (Epub 2013 Jul 9 PMID: 23836287).

    Article  CAS  PubMed  Google Scholar 

  46. Guan R, Cai S, Sun M, Xu M. Upregulation of miR-520b promotes ovarian cancer growth. Oncol Lett. 2017;14(3):3155–61. https://doi.org/10.3892/ol.2017.6552 (Epub 2017 Jul 8. PMID: 28927060; PMCID: PMC5588071).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pan Y, Robertson G, Pedersen L, Lim E, Hernandez-Herrera A, Rowat AC, Patil SL, Chan CK, Wen Y, Zhang X, Basu-Roy U, Mansukhani A, Chu A, Sipahimalani P, Bowlby R, Brooks D, Thiessen N, Coarfa C, Ma Y, Moore RA, Schein JE, Mungall AJ, Liu J, Pecot CV, Sood AK, Jones SJ, Marra MA, Gunaratne PH. miR-509-3p is clinically significant and strongly attenuates cellular migration and multi-cellular spheroids in ovarian cancer. Oncotarget. 2016;7(18):25930–48. https://doi.org/10.18632/oncotarget.8412 (Erratum in: Oncotarget. 2017 Mar 7;8(10 ):17406. PMID: 27036018; PMCID: PMC5041955).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chan CK, Pan Y, Nyberg K, Marra MA, Lim EL, Jones SJ, Maar D, Gibb EA, Gunaratne PH, Robertson AG, Rowat AC. Tumour-suppressor microRNAs regulate ovarian cancer cell physical properties and invasive behaviour. Open Biol. 2016;6(11):160275. https://doi.org/10.1098/rsob.160275 (PMID: 27906134; PMCID: PMC5133448).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li H, Shen S, Chen X, Ren Z, Li Z, Yu Z. miR-450b-5p loss mediated KIF26B activation promoted hepatocellular carcinoma progression by activating PI3K/AKT pathway. Cancer Cell Int. 2019;31(19):205. https://doi.org/10.1186/s12935-019-0923-x (PMID: 31388332; PMCID: PMC6670205).

    Article  CAS  Google Scholar 

  50. Denoyelle C, Lambert B, Meryet-Figuière M, Vigneron N, Brotin E, Lecerf C, Abeilard E, Giffard F, Louis MH, Gauduchon P, Juin P, Poulain L. miR-491-5p-induced apoptosis in ovarian carcinoma depends on the direct inhibition of both BCL-XL and EGFR leading to BIM activation. Cell Death Dis. 2014;5(10):e1445. https://doi.org/10.1038/cddis.2014.389 (PMID: 25299770; PMCID: PMC4649504).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang C, Kim HS, Park SJ, Lee EJ, Kim SI, Song G, Lim W. Inhibition of miR-214-3p Aids in preventing epithelial ovarian cancer malignancy by increasing the expression of LHX6. Cancers (Basel). 2019;11(12):1917. https://doi.org/10.3390/cancers11121917 (PMID: 31810245; PMCID: PMC6966693).

    Article  CAS  Google Scholar 

  52. Liu Y, Lin J, Zhai S, Sun C, Xu C, Zhou H, Liu H. MicroRNA-214 Suppresses ovarian cancer by targeting β-catenin. Cell Physiol Biochem. 2018;45(4):1654–62. https://doi.org/10.1159/000487733 (Epub 2018 Feb 21 PMID: 29486472).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Caglar Berkel is funded by TUBITAK (The Scientific and Technological Research Council of Turkey) 2211-E graduate program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caglar Berkel or Ercan Cacan.

Ethics declarations

Conflict of interest

Authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkel, C., Cacan, E. Transcriptomic analysis reveals tumor stage- or grade-dependent expression of miRNAs in serous ovarian cancer. Human Cell 34, 862–877 (2021). https://doi.org/10.1007/s13577-021-00486-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00486-3

Keywords

Navigation