Skip to main content

Advertisement

Log in

Genetic variation, biological structure, sources, and fundamental parts played by CXCL12 in pathophysiology of type 1 diabetes mellitus

  • Review Article
  • Published:
International Journal of Diabetes in Developing Countries Aims and scope Submit manuscript

Abstract

Type I diabetes (TID) is defined as an autoimmune disease resulting from the destruction of insulin-producing beta-cells by autoreactive T cells. It is believed that TID resulted from the immune-mediated destruction of insulin-producing β-cells in pancreatic islets of Langerhans. Chemokines are small glycoproteins (weighing 8–10 kDa) that are attractive chemotactive factors for a wide variety of cell types, especially immune system cells and their target cells which express appropriate G protein receptors. It has been well established that chemokines as the main arms of the immune system play key roles in the regulation of immune responses which is evidenced to be important in the pathogenesis of the diseases. Several other environmental and genetic components of the immune systems also confirmed to influence the onset of immune-related diseases. The CXC chemokine CXCL12 is involved in the development of immune responses. Previous studies reported that the known genetic variation SDF1–3′A regulates the expression of CXCL12. Hence, the aim of this study was to address the latest findings regarding the relation between the serum concentrations and CXCL12 genetic variation, in SDF1–3′A in T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1:

Similar content being viewed by others

References

  1. Chiang YJ, Kole HK, Brown K, Naramura M, Fukuhara S, Hu RJ, et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature. 2000;403(6766):216–20.

    Article  CAS  PubMed  Google Scholar 

  2. Arababadi MK, Nasiri Ahmadabadi B, Kennedy D. Current information on the immunologic status of occult hepatitis B infection. Transfusion. 2012;52(8):1819–26.

    Article  CAS  PubMed  Google Scholar 

  3. Al Ghamdi AA, Badr G, Hozzein WN, Allam A, Al-Waili NS, Al-Wadaan MA, et al. Oral supplementation of diabetic mice with propolis restores the proliferation capacity and chemotaxis of B and T lymphocytes towards CCL21 and CXCL12 by modulating the lipid profile, the pro-inflammatory cytokine levels and oxidative stress. BMC Immunol. 2015;16:54.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Miyara M, Wing K, Sakaguchi S. Therapeutic approaches to allergy and autoimmunity based on FoxP3+ regulatory T-cell activation and expansion. J Allergy Clin Immunol. 2009;123(4):749–55. quiz 56-7

    Article  CAS  PubMed  Google Scholar 

  5. Jamali Z, Nazari M, Khoramdelazad H, Hakimizadeh E, Mahmoodi M, Karimabad MN, et al. Expression of CC chemokines CCL2, CCL5, and CCL11 is associated with duration of disease and complications in type-1 diabetes: a study on Iranian diabetic patients. Clin Lab. 2013;59(9-10):993–1001.

    CAS  PubMed  Google Scholar 

  6. Bach JF. Insulin-dependent diabetes mellitus as an autoimmune disease. Endocr Rev. 1994;15(4):516–42.

    Article  CAS  PubMed  Google Scholar 

  7. Obermannova B, Petruzelkova L, Sulakova T, Sumnik Z. HbA1c but not diabetes duration predicts increased arterial stiffness in adolescents with poorly controlled type 1 diabetes. Pediatr Diabetes 2016

  8. Pulikkal AA, Kolly A, Prasanna Kumar KM, Shivaprasad C. The seroprevalence of immunoglobulin A transglutaminase in type 1 diabetic patients of South Indian origin. Indian J Endocrinol Metab. 2016;20(2):233–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Puff R, D’Orlando O, Heninger AK, Kuhn D, Krause S, Winkler C, et al. Compromised immune response in infants at risk for type 1 diabetes born by Caesarean Section. Clin Immunol (Orlando, Fla). 2015;160(2):282–5.

    Article  CAS  Google Scholar 

  10. Siegel KR, Echouffo-Tcheugui JB, Ali MK, Mehta NK, Narayan KM, Chetty V. Societal correlates of diabetes prevalence: An analysis across 94 countries. Diabetes Res Clin Pract. 2012;96(1):76–83.

    Article  PubMed  Google Scholar 

  11. Green A, Patterson CC. Trends in the incidence of childhood-onset diabetes in Europe 1989-1998. Diabetologia. 2001;44(Suppl 3):B3–8.

    Article  PubMed  Google Scholar 

  12. Martin S, Wolf-Eichbaum D, Duinkerken G, Scherbaum WA, Kolb H, Noordzij JG, et al. Development of type 1 diabetes despite severe hereditary B-lymphocyte deficiency. N Engl J Med. 2001;345(14):1036–40.

    Article  CAS  PubMed  Google Scholar 

  13. Nathanson D, Nystrom T. Hypoglycemic pharmacological treatment of type 2 diabetes: targeting the endothelium. Mol Cell Endocrinol. 2009;297(1-2):112–26. Epub 2008/11/29

    Article  CAS  PubMed  Google Scholar 

  14. Bluestone JA, Tang Q, Sedwick CE. T regulatory cells in autoimmune diabetes: past challenges, future prospects. J Clin Immunol. 2008;28(6):677–84.

    Article  CAS  PubMed  Google Scholar 

  15. Calderon TM, Eugenin EA, Lopez L, Kumar SS, Hesselgesser J, Raine CS, et al. A role for CXCL12 (SDF-1alpha) in the pathogenesis of multiple sclerosis: regulation of CXCL12 expression in astrocytes by soluble myelin basic protein. J Neuroimmunol. 2006;177(1-2):27–39.

    Article  CAS  PubMed  Google Scholar 

  16. Pundziute-Lycka A, Dahlquist G, Nystrom L, Arnqvist H, Bjork E, Blohme G, et al. The incidence of Type I diabetes has not increased but shifted to a younger age at diagnosis in the 0-34 years group in Sweden 1983-1998. Diabetologia. 2002;45(6):783–91.

    Article  CAS  PubMed  Google Scholar 

  17. Cipolletta C, Ryan KE, Hanna EV, Trimble ER. Activation of peripheral blood CD14+ monocytes occurs in diabetes. Diabetes. 2005;54(9):2779–86.

    Article  CAS  PubMed  Google Scholar 

  18. Devaraj S, Cheung AT, Jialal I, Griffen SC, Nguyen D, Glaser N, et al. Evidence of increased inflammation and microcirculatory abnormalities in patients with type 1 diabetes and their role in microvascular complications. Diabetes. 2007;56(11):2790–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Devaraj S, Glaser N, Griffen S, Wang-Polagruto J, Miguelino E, Jialal I. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes. 2006;55(3):774–9.

    Article  CAS  PubMed  Google Scholar 

  20. Devaraj S, Jialal I. Increased secretion of IP-10 from monocytes under hyperglycemia is via the TLR2 and TLR4 pathway. Cytokine. 2009;47(1):6–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hassanshahi G, Patel SS, Jafarzadeh AA, Dickson AJ. Expression of CXC chemokine IP-10/Mob-1 by primary hepatocytes following heat shock. Saudi Med J. 2007;28(4):514–8.

    PubMed  Google Scholar 

  22. Abousaidi H, Vazirinejad R, Arababadi MK, Rafatpanah H, Pourfathollah AA, Derakhshan R, et al. Lack of association between chemokine receptor 5 (CCR5) delta32 mutation and pathogenesis of asthma in Iranian patients. South Med J. 2011;104(6):422–5.

    Article  PubMed  Google Scholar 

  23. Hassanshahi G, Jafarzadeh A, James DA. Expression of stromal derived factor alpha (SDF-1 alpha) by primary hepatocytes following isolation and heat shock stimulation. Iran J Allergy, Asthma, Immunol. 2008;7(2):61–8.

    CAS  Google Scholar 

  24. Karimabad NMHG, Arababadi MK, Shabani Z, Shamsizadeh A, Rafatpanah H, et al. Decreased Circulating Level in Parallel With Lack of Associated Genetic Variation in CXCL10 (IP-10) in Southeastern Post-Transfusion Occult HBV Infected Patients. Lab Med. 2011;42(7):13–6.

    Article  Google Scholar 

  25. Radman M, Hassanshahi G, Vazirinejad R, Arababadi MK, Karimabad MN, Khorramdelazad H, et al. Serum Levels of the CC Chemokines CCL2, CCL5, and CCL11 in Food Allergic Children with Different Clinical Manifestations. Inflammation 2012

  26. Khandany BK, Hassanshahi G, Khorramdelazad H, Balali Z, Shamsizadeh A, Arababadi MK, et al. Evaluation of circulating concentrations of CXCL1 (Gro-alpha), CXCL10 (IP-10) and CXCL12 (SDF-1) in ALL patients prior and post bone marrow transplantation. Pathol Res Pract. 2012;208(10):615–9.

    Article  CAS  PubMed  Google Scholar 

  27. Derakhshan R, Arababadi MK, Ahmadi Z, Karimabad MN, Salehabadi VA, Abedinzadeh M, et al. Increased circulating levels of SDF-1 (CXCL12) in type 2 diabetic patients are correlated to disease state but are unrelated to polymorphism of the SDF-1beta gene in the Iranian population. Inflammation. 2012;35(3):900–4.

    Article  CAS  PubMed  Google Scholar 

  28. Hakimizadeh E, Shamsizadeh A, Nazari M, Arababadi MK, Rezaeian M, Vazirinejad R, et al. Increased circulating levels of CXC chemokines is correlated with duration and complications of the disease in type-1 diabetes: a study on Iranian diabetic patients. Clin Lab. 2013;59(5-6):531–7.

    CAS  PubMed  Google Scholar 

  29. Aminzadeh F, Ghorashi Z, Nabati S, Ghasemshirazi M, Arababadi MK, Shamsizadeh A, et al. Differential expression of CXC chemokines CXCL10 and CXCL12 in term and pre-term neonates and their mothers. American journal of reproductive immunology (New York, NY : 1989). 2012;68(4):338-44

  30. Daryani A, Hosseini AZ, Dalimi A. Immune responses against excreted/secreted antigens of Toxoplasma gondii tachyzoites in the murine model. Vet Parasitol. 2003;113(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  31. Azin H, Vazirinejad R, Ahmadabadi BN, Khorramdelazad H, Zarandi ER, Arababadi MK, et al. The SDF-1 3’a genetic variation of the chemokine SDF-1alpha (CXCL12) in parallel with its increased circulating levels is associated with susceptibility to MS: a study on Iranian multiple sclerosis patients. J Mol Neurosci: MN. 2012;47(3):431–6.

    Article  CAS  PubMed  Google Scholar 

  32. Hassanshahi G, Arababadi MK, Khoramdelazad H, Yaghini N, Zarandi ER. Assessment of CXCL12 (SDF-1alpha) polymorphisms and its serum level in posttransfusion occult HBV-infected patients in Southeastern Iran. Arch Med Res. 2010;41(5):338–42.

    Article  CAS  PubMed  Google Scholar 

  33. Khabour OF, Abu-Haweleh LJ, Alzoubi KH. Distribution Of CCR-5Delta32, CCR2-64I, and SDF-1-3’A Alleles Among Jordanians. AIDS Res Hum Retrovir 2012.

  34. Arababadi MKMM, Sajadi SMA, Hassanshahi G, Ahmadababdi BN, Salehabadi VA. et a. nterleukin (IL)-10 gene polymorphisms is associated with type 2 diabetes with and without nephropathy: a study of patients from the South-East region of Iran. Inflammation. 2012:s10753–011-9381-x.

  35. Nishioji K, Okanoue T, Itoh Y, Narumi S, Sakamoto M, Nakamura H, et al. Increase of chemokine interferon-inducible protein-10 (IP-10) in the serum of patients with autoimmune liver diseases and increase of its mRNA expression in hepatocytes. Clin Exp Immunol. 2001;123(2):271–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U S A. 1994;91(6):2305–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gleichmann M, Gillen C, Czardybon M, Bosse F, Greiner-Petter R, Auer J, et al. Cloning and characterization of SDF-1gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur J Neurosci. 2000;12(6):1857–66.

    Article  CAS  PubMed  Google Scholar 

  38. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med. 1996;184(3):1101–9.

    Article  CAS  PubMed  Google Scholar 

  39. Guinamard R, Signoret N, Ishiai M, Marsh M, Kurosaki T, Ravetch JV. B cell antigen receptor engagement inhibits stromal cell-derived factor (SDF)-1alpha chemotaxis and promotes protein kinase C (PKC)-induced internalization of CXCR4. J Exp Med. 1999;189(9):1461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, et al. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics. 1995;28(3):495–500.

    Article  CAS  PubMed  Google Scholar 

  41. Holmes WD, Consler TG, Dallas WS, Rocque WJ, Willard DH. Solution studies of recombinant human stromal-cell-derived factor-1. Protein Expr Purif. 2001;21(3):367–77.

    Article  CAS  PubMed  Google Scholar 

  42. Fedyk ER, Jones D, Critchley HO, Phipps RP, Blieden TM, Springer TA. Expression of stromal-derived factor-1 is decreased by IL-1 and TNF and in dermal wound healing. J Immunol (Baltimore, Md : 1950). 2001;166(9):5749–54.

    Article  CAS  Google Scholar 

  43. Baggiolini M, Dewald B, Moser B. Human chemokines: an update. Annu Rev Immunol. 1997;15:675–705.

    Article  CAS  PubMed  Google Scholar 

  44. Wuyts A, Haelens A, Proost P, Lenaerts JP, Conings R, Opdenakker G, et al. Identification of mouse granulocyte chemotactic protein-2 from fibroblasts and epithelial cells. Functional comparison with natural KC and macrophage inflammatory protein-2. J Immunol (Baltimore, Md : 1950). 1996;157(4):1736–43.

    CAS  Google Scholar 

  45. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393(6685):595–9.

    Article  CAS  PubMed  Google Scholar 

  46. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382(6592):635–8.

    Article  CAS  PubMed  Google Scholar 

  47. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998;393(6685):591–4.

    Article  CAS  PubMed  Google Scholar 

  48. Kipps S, Bahu T, Ong K, Ackland FM, Brown RS, Fox CT, et al. Current methods of transfer of young people with Type 1 diabetes to adult services. Diabet Med: J Br Diabetic Assoc. 2002;19(8):649–54.

    Article  CAS  Google Scholar 

  49. Loetscher P, Gong JH, Dewald B, Baggiolini M, Clark-Lewis I. N-terminal peptides of stromal cell-derived factor-1 with CXC chemokine receptor 4 agonist and antagonist activities. J Biol Chem. 1998;273(35):22279–83.

    Article  CAS  PubMed  Google Scholar 

  50. Terada R, Yamamoto K, Hakoda T, Shimada N, Okano N, Baba N, et al. Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases. Lab Investig; J Tech Meth Pathol. 2003;83(5):665-72.

  51. Mohl W, Lerch MM, Klotz M, Freidank H, Zeitz M. Infection of an intravenous port system with Metschnikowia pulcherrima Pitt et Miller. Mycoses. 1998;41(9-10):425–6.

    Article  CAS  PubMed  Google Scholar 

  52. Nagasawa T, Tachibana K, Kishimoto T. A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol. 1998;10(3):179–85.

    Article  CAS  PubMed  Google Scholar 

  53. Duda DG, Kozin SV, Kirkpatrick ND, Xu L, Fukumura D, Jain RK. CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res: Off J Am Assoc Cancer Res. 2011;17(8):2074–80.

    Article  CAS  Google Scholar 

  54. Blades MC, Ingegnoli F, Wheller SK, Manzo A, Wahid S, Panayi GS, et al. Stromal cell-derived factor 1 (CXCL12) induces monocyte migration into human synovium transplanted onto SCID Mice. Arthritis Rheum. 2002;46(3):824–36.

    Article  CAS  PubMed  Google Scholar 

  55. Balabanian K, Couderc J, Bouchet-Delbos L, Amara A, Berrebi D, Foussat A, et al. Role of the chemokine stromal cell-derived factor 1 in autoantibody production and nephritis in murine lupus. J Immunol (Baltimore, Md : 1950). 2003;170(6):3392–400.

    Article  CAS  Google Scholar 

  56. Dziembowska M, Tham TN, Lau P, Vitry S, Lazarini F, Dubois-Dalcq M. A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia. 2005;50(3):258–69.

    Article  CAS  PubMed  Google Scholar 

  57. Ambrosini E, Remoli ME, Giacomini E, Rosicarelli B, Serafini B, Lande R, et al. Astrocytes produce dendritic cell-attracting chemokines in vitro and in multiple sclerosis lesions. J Neuropathol Exp Neurol. 2005;64(8):706–15.

    Article  CAS  PubMed  Google Scholar 

  58. Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisakk P, Ransohoff RM, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain J Neurol. 2006;129(Pt 1):200–11.

    Google Scholar 

  59. Meiron M, Zohar Y, Anunu R, Wildbaum G, Karin N. CXCL12 (SDF-1alpha) suppresses ongoing experimental autoimmune encephalomyelitis by selecting antigen-specific regulatory T cells. J Exp Med. 2008;205(11):2643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kawasaki E, Ide A, Abiru N, Kobayashi M, Fukushima T, Kuwahara H, et al. Stromal cell-derived factor-1 chemokine gene variant in patients with type 1 diabetes and autoimmune thyroid disease. Ann N Y Acad Sci. 2004;1037:79–83.

    Article  CAS  PubMed  Google Scholar 

  61. Secchiero P, Zella D, Curreli S, Mirandola P, Capitani S, Gallo RC, et al. Engagement of CD28 modulates CXC chemokine receptor 4 surface expression in both resting and CD3-stimulated CD4+ T cells. J Immunol (Baltimore, Md : 1950). 2000;164(8):4018–24.

    Article  CAS  Google Scholar 

  62. Terasaki M, Sugita Y, Arakawa F, Okada Y, Ohshima K, Shigemori M. CXCL12/CXCR4 signaling in malignant brain tumors: a potential pharmacological therapeutic target. Brain tumor pathology. 2011;28(2):89–97.

    Article  CAS  PubMed  Google Scholar 

  63. Poggi A, Catellani S, Fenoglio D, Borsellino G, Battistini L, Zocchi MR. Adhesion molecules and kinases involved in gammadelta T cells migratory pathways: implications for viral and autoimmune diseases. Curr Med Chem. 2007;14(30):3166–70.

    Article  CAS  PubMed  Google Scholar 

  64. Poznansky MC, Olszak IT, Foxall R, Evans RH, Luster AD, Scadden DT. Active movement of T cells away from a chemokine. Nat Med. 2000;6(5):543–8.

    Article  CAS  PubMed  Google Scholar 

  65. Sharp CD, Huang M, Glawe J, Patrick DR, Pardue S, Barlow SC, et al. Stromal cell-derived factor-1/CXCL12 stimulates chemorepulsion of NOD/LtJ T-cell adhesion to islet microvascular endothelium. Diabetes. 2008;57(1):102–12.

    Article  CAS  PubMed  Google Scholar 

  66. Papeta N, Chen T, Vianello F, Gererty L, Malik A, Mok YT, et al. Long-term survival of transplanted allogeneic cells engineered to express a T cell chemorepellent. Transplantation. 2007;83(2):174–83.

    Article  CAS  PubMed  Google Scholar 

  67. Nti BK, Markman JL, Bertera S, Styche AJ, Lakomy RJ, Subbotin VM, et al. Treg cells in pancreatic lymph nodes: the possible role in diabetogenesis and beta cell regeneration in a T1D model. Cell Mol Immunol. 2012;9(6):455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vidakovic M, Grdovic N, Dinic S, Mihailovic M, Uskokovic A, Arambasic JJ. The Importance of the CXCL12/CXCR4 Axis in Therapeutic Approaches to Diabetes Mellitus Attenuation. Front Immunol. 2015;6:403.

    PubMed  PubMed Central  Google Scholar 

  69. Chen T, Yuan J, Duncanson S, Hibert ML, Kodish BC, Mylavaganam G, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2015;15(3):618–27.

    Article  CAS  Google Scholar 

  70. Righi E, Kashiwagi S, Yuan J, Santosuosso M, Leblanc P, Ingraham R, et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res. 2011;71(16):5522–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matin K, Salam MA, Akhter J, Hanada N, Senpuku H. Role of stromal-cell derived factor-1 in the development of autoimmune diseases in non-obese diabetic mice. Immunology. 2002;107(2):222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao Y, Guo C, Hwang D, Lin B, Dingeldein M, Mihailescu D, et al. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model. Biochem Biophys Res Commun. 2010;399(4):629–36.

    Article  CAS  PubMed  Google Scholar 

  73. Aboumrad E, Madec AM, Thivolet C. The CXCR4/CXCL12 (SDF-1) signalling pathway protects non-obese diabetic mouse from autoimmune diabetes. Clin Exp Immunol. 2007;148(3):432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Noh YH, Yim YS, Kim DH, Lee MW, Kim DS, Kim HR, et al. Correlation between chemokines released from umbilical cord blood-derived mesenchymal stem cells and engraftment of hematopoietic stem cells in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Pediatr Hematol Oncol. 2011;28(8):682–90.

    Article  CAS  PubMed  Google Scholar 

  75. Ferraro F, Lymperi S, Mendez-Ferrer S, Saez B, Spencer JA, Yeap BY, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med. 2011;3(104):104ra1.

    Article  Google Scholar 

  76. Jie W, Wang X, Zhang Y, Guo J, Kuang D, Zhu P, et al. SDF-1alpha/CXCR4 axis is involved in glucose-potentiated proliferation and chemotaxis in rat vascular smooth muscle cells. Int J Exp Pathol. 2010;91(5):436–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Leng Q, Nie Y, Zou Y, Chen J. Elevated CXCL12 expression in the bone marrow of NOD mice is associated with altered T cell and stem cell trafficking and diabetes development. BMC Immunol. 2008;9:51.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Al Ghamdi AA, Badr G, Hozzein WN, Allam A, Al-Waili NS, Al-Wadaan MA, et al. Oral supplementation of diabetic mice with propolis restores the proliferation. D - 100966980. (- 1471-2172 (Electronic)):- 54.

  79. Glawe JD, Mijalis EM, Davis WC, Barlow SC, Gungor N, McVie R, et al. SDF-1-CXCR4 differentially regulates autoimmune diabetogenic T cell adhesion through ROBO1-SLIT2 interactions in mice. Diabetologia. 2013;56(10):2222–30.

    Article  CAS  PubMed  Google Scholar 

  80. Albiero M, Poncina N, Ciciliot S, Cappellari R, Menegazzo L, Ferraro F, et al. Bone Marrow Macrophages Contribute to Diabetic Stem Cell Mobilopathy by Producing Oncostatin M. Diabetes. 2015;64(8):2957–68.

    Article  CAS  PubMed  Google Scholar 

  81. Dubois-Laforgue D, Hendel H, Caillat-Zucman S, Zagury JF, Winkler C, Boitard C, et al. A common stromal cell-derived factor-1 chemokine gene variant is associated with the early onset of type 1 diabetes. Diabetes. 2001;50(5):1211–3.

    Article  CAS  PubMed  Google Scholar 

  82. Park Y, Tait BD, Kawasaki E, Rowley M, Mackay IR. Closer association of IA-2 humoral autoreactivity with HLA DR3/4 than DQB1*0201/*0302 in Korean T1D patients. Ann N Y Acad Sci. 2004;1037:104–9.

    Article  CAS  PubMed  Google Scholar 

  83. Razmkhah M, Doroudchi M, Ghayumi SM, Erfani N, Ghaderi A. Stromal cell-derived factor-1 (SDF-1) gene and susceptibility of Iranian patients with lung cancer. Lung Cancer (Amsterdam, Netherlands). 2005;49(3):311–5.

    Article  Google Scholar 

  84. Jansen A, Homo-Delarche F, Hooijkaas H, Leenen PJ, Dardenne M, Drexhage HA. Immunohistochemical characterization of monocytes-macrophages and dendritic cells involved in the initiation of the insulitis and beta-cell destruction in NOD mice. Diabetes. 1994;43(5):667–75.

    Article  CAS  PubMed  Google Scholar 

  85. Nanki T, Lipsky PE. Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J Immunol (Baltimore, Md: 1950). 2000;164(10):5010–4.

    Article  CAS  Google Scholar 

  86. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, et al. Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science (New York, NY). 1998;279(5349):389-93.

  87. Arya SK, Ginsberg CC, Davis-Warren A, D’Costa J. In vitro phenotype of SDF1 gene mutant that delays the onset of human immunodeficiency virus disease in vivo. J Hum Virol. 1999;2(3):133–8.

    CAS  PubMed  Google Scholar 

  88. Mein CA, Esposito L, Dunn MG, Johnson GC, Timms AE, Goy JV, et al. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat Genet. 1998;19(3):297–300.

    Article  CAS  PubMed  Google Scholar 

  89. Reed P, Cucca F, Jenkins S, Merriman M, Wilson A, McKinney P, et al. Evidence for a type 1 diabetes susceptibility locus (IDDM10) on human chromosome 10p11-q11. Hum Mol Genet. 1997;6(7):1011–6.

    Article  CAS  PubMed  Google Scholar 

  90. Khorramdelazad H, Bagheri V, Hassanshahi G, Zeinali M, Vakilian A. New insights into the role of stromal cell-derived factor 1 (SDF-1/CXCL12) in the pathophysiology of multiple sclerosis. J Neuroimmunol. 2016;290:70–5.

    Article  CAS  PubMed  Google Scholar 

  91. Karimabad MN, Hassanshahi G. Significance of CXCL12 in type 2 diabetes mellitus and its associated complications. Inflammation. 2015;38(2):710–7.

    Article  CAS  PubMed  Google Scholar 

  92. Ide A, Kawasaki E, Abiru N, Sun F, Fukushima T, Takahashi R, et al. Stromal-cell derived factor-1 chemokine gene variant is associated with type 1 diabetes age at onset in Japanese population. Hum Immunol. 2003;64(10):973–8.

    Article  CAS  PubMed  Google Scholar 

  93. Shigihara T, Shimada A, Yamada S, Maruyama T, Hirose H, Saruta T. Stromal cell-derived factor-1 chemokine gene polymorphism is not associated with onset age of Japanese type 1 diabetes. Ann N Y Acad Sci. 2003;1005:328–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by a grant from the Rafsanjan University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamhossein Hassanshahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and for national research committee.

Informed consent

No informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimabad, M.N., Khoramdelazad, H. & Hassanshahi, G. Genetic variation, biological structure, sources, and fundamental parts played by CXCL12 in pathophysiology of type 1 diabetes mellitus. Int J Diabetes Dev Ctries 37, 229–239 (2017). https://doi.org/10.1007/s13410-016-0534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13410-016-0534-1

Keywords

Navigation