Skip to main content

Advertisement

Log in

Biodistribution and histopathology studies of amphotericin B sodium deoxycholate sulfate formulation following intratracheal instillation in rat models

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Aerosol inhalation of amphotericin B (AmB) can be a clinically compliant way to administer the drug directly to the pulmonary route for treatment as well as prophylaxis of invasive pulmonary aspergillosis (IPA). We report aerosol formulation of AmB using sodium deoxycholate sulfate (SDCS), a lipid carrier synthesized in-house using natural precursor deoxycholic acid. In vitro toxicity was determined by MTT assay. Biodistribution and histopathology in rats were evaluated in targeted organs including the lungs, kidneys, spleen, and liver. No toxicity was observed when lung and kidney cells treated with AmB-SDCS formulations up to 8 μg/mL and minimal toxicity at higher concentration 16 μg/mL, while the Fungizone®-like formulation induced toxicity to lung and kidney cells with viability decreasing from 86 to 41% and 100 to 49%, respectively, when compared with an equivalent concentration of AmB-SDCS. Renal and hepatic markers were raised for Fungizone®-like formulation–treated rats but not for AmB-SDCS formulations following 7 days of regular dosing by intratracheal instillation. AmB concentrations were highest in the lungs (5.4–8.3 μg/g) which were well above minimum inhibitory concentration (MIC) of all Aspergillus species. Plasma concentration was also above MIC (> 2 μg/mL) for all AmB-SDCS formulations in comparison with Fungizone®-like formulation. No evidence of abnormal histopathology was observed in the lungs, liver, spleen, and kidneys for all AmB-SDCS formulations but was observed for the group treated with Fungizone®-like formulation. It is concluded that AmB-SDCS formulations can be efficiently administered via intratracheal instillation with no evidence of toxicity and may find great value in the treatment as well as prophylaxis of IPA through inhalation route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:327–60.

    Article  CAS  PubMed  Google Scholar 

  2. Oren I, Goldstein N. Invasive pulmonary aspergillosis. Curr Opin Pulm Med. 2002;8:195–200.

    Article  PubMed  Google Scholar 

  3. Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73:919–34.

    Article  CAS  PubMed  Google Scholar 

  4. Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S. Amphotericin B formulations and drug targeting. J Pharm Sci. 2008;97:2405–25.

    Article  CAS  PubMed  Google Scholar 

  5. Slain D. Lipid-based amphotericin B for the treatment of fungal infections. Pharmacotherapy. 1999;19:306–23.

    Article  CAS  PubMed  Google Scholar 

  6. Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. National Institute of Allergy and Infectious Diseases Study Group. N Engl J Med. 1999;340:764–71.

    Article  CAS  PubMed  Google Scholar 

  7. Tang X, Zhu H, Sun L, Hou W, Cai S, Zhang R, et al. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Int J Nanomedicine. 2014;9:5403–13.

    PubMed  PubMed Central  Google Scholar 

  8. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172:1487–90.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vyas S, Quraishi S, Gupta S, Jaganathan K. Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages. Int J Pharm. 2005;296:12–25.

    Article  CAS  PubMed  Google Scholar 

  10. Vyas S, Kannan M, Jain S, Mishra V, Singh P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int J Pharm. 2004;269:37–49.

    Article  CAS  PubMed  Google Scholar 

  11. Allen SD, Sorensen KN, Neial MJ, Durrant C, Proffit RT. Prophylactic efficacy of aerosolized liposomal (AmBisome) and non-liposomal (Fungizone®) amphotericin B in murine pulmonary aspergillosis. J Antimicrob Chemother. 1994;34:1001–13.

    Article  CAS  PubMed  Google Scholar 

  12. Cicogna CE, White MH, Bernard EM, Ishimura T, Sun M, Tong WP, et al. Efficacy of prophylactic aerosol amphotericin B lipid complex in a rat model of pulmonary aspergillosis. Antimicrob Agents Chemother. 1997;41:259–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koizumi T, Kubo K, Kaneki T, Hanaoka M, Hayano T, Miyahara T, et al. Pharmacokinetic evaluation of amphotericin B in lung tissue: lung lymph distribution after intravenous injection and airspace distribution after aerosolization and inhalation of amphotericin B. Antimicrob Agents Chemother. 1998;42:1597–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lambros MP, Bourne DWA, Abbas SA, Johnson DL. Disposition of aerosolized liposomal amphotericin B. J Pharm Sci. 1997;86:1066–9.

    Article  CAS  PubMed  Google Scholar 

  15. Ruijgrok EJ. Efficacy of aerosolized amphotericin B desoxycholate and liposomal amphotericin B in the treatment of invasive pulmonary aspergillosis in severely immunocompromised rats. J Antimicrob Chemother. 2001;48:89–95.

    Article  CAS  PubMed  Google Scholar 

  16. Usman F, Ul-Haq Z, Khalil R, Tinpun K, Srichana T. Pharmacologically safe nanomicelles of amphotericin B with lipids: nuclear magnetic resonance and molecular docking approach. J Pharm Sci. 2017;106:3574–82.

    Article  CAS  PubMed  Google Scholar 

  17. Adhikari K, Buatong W, Thawithong E, Suwandecha T, Srichana T. Factors affecting enhanced permeation of amphotericin B across cell membranes and safety of formulation. AAPS PharmSciTech. 2016;17:820–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gangadhar KN, Adhikari K, Srichana T. Synthesis and evaluation of sodium deoxycholate sulfate as a lipid drug carrier to enhance the solubility, stability and safety of an amphotericin B inhalation formulation. Int J Pharm. 2014;471:430–8.

    Article  CAS  PubMed  Google Scholar 

  19. Al-Quadeib BT, Radwan MA, Siller L, Mutch E, Horrocks B, Wright M, et al. Therapeutic monitoring of amphotericin B in Saudi ICU patients using UPLC MS/MS assay: monitoring amphotericin B in patients using UPLC. Biomed Chromatogr. 2014;28:1652–9.

    Article  CAS  PubMed  Google Scholar 

  20. Yu B, Okano T, Kataoka K, Kwon G. Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release. 1998;53:131–6.

    Article  CAS  PubMed  Google Scholar 

  21. Bhamra R, Sa’ad A, Bolcsak LE, Janoff AS, Swenson CE. Behavior of amphotericin B lipid complex in plasma in vitro and in the circulation of rats. Antimicrob Agents Chemother. 1997;41:886–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tiyaboonchai W, Limpeanchob N. Formulation and characterization of amphotericin B–chitosan–dextran sulfate nanoparticles. Int J Pharm. 2007;329:142–9.

    Article  CAS  PubMed  Google Scholar 

  23. Risovic V, Boyd M, Choo E, Wasan KM. Effects of lipid-based oral formulations on plasma and tissue amphotericin B concentrations and renal toxicity in male rats. Antimicrob Agents Chemother. 2003;47:3339–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jung SH, Lim DH, Jung SH, Lee JE, Jeong K-S, Seong H, et al. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci. 2009;37:313–20.

    Article  CAS  PubMed  Google Scholar 

  25. Clark JM, Whitney RR, Olsen SJ, George RJ, Swerdel MR, Kunselman L, et al. Amphotericin B lipid complex therapy of experimental fungal infections in mice. Antimicrob Agents Chemother. 1991;35:615–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wasan KM, Grossie VB, Lopez-Berestein G. Concentrations in serum and distribution in tissue of free and liposomal amphotericin B in rats during continuous intralipid infusion. Antimicrob Agents Chemother. 1994;38:2224–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26:523–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Caldeira LR, Fernandes FR, Costa DF, Frézard F, Afonso LCC, Ferreira LAM. Nanoemulsions loaded with amphotericin B: a new approach for the treatment of leishmaniasis. Eur J Pharm Sci. 2015;70:125–31.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao M, Hu J, Zhang L, Zhang L, Sun Y, Ma N, et al. Study of amphotericin B magnetic liposomes for brain targeting. Int J Pharm. 2014;475:9–16.

    Article  CAS  PubMed  Google Scholar 

  30. Serrano DR, Hernández L, Fleire L, González-Alvarez I, Montoya A, Ballesteros MP, et al. Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. Int J Pharm. 2013;447:38–46.

    Article  CAS  PubMed  Google Scholar 

  31. Diekema DJ, Messer SA, Hollis RJ, Jones RN, Pfaller MA. Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J Clin Microbiol. 2003;41:3623–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salas V, Pastor FJ, Calvo E, Alvarez E, Sutton DA, Mayayo E, et al. In vitro and in vivo activities of posaconazole and amphotericin B in a murine invasive infection by Mucor circinelloides: poor efficacy of posaconazole. Antimicrob Agents Chemother. 2012;56:2246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dupont B. Overview of the lipid formulations of amphotericin B. J Antimicrob Chemother. 2002;49:31–6.

    Article  CAS  PubMed  Google Scholar 

  34. Denning DW. Invasive Aspergillosis. Clin Infect Dis. 1998;26:781–803.

    Article  CAS  PubMed  Google Scholar 

  35. Purcell IF, Corris PA. Use of nebulised liposomal amphotericin B in the treatment of Aspergillus fumigatus empyema. Thorax. 1995;50:1321–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diot P, Rivoire B, Le Pape A, Lemarie E, Dire D, Furet Y, et al. Deposition of amphotericin B aerosols in pulmonary aspergilloma. Eur Respir J. 1995;8:1263–8.

    Article  CAS  PubMed  Google Scholar 

  37. Dubois J, Bartter T, Gryn J, Pratter MR. The physiologic effects of inhaled amphotericin B. Chest. 1995;108:750–3.

    Article  CAS  PubMed  Google Scholar 

  38. Gryn J, Goldberg J, Johnson E, Siegel J, Inzerillo J. The toxicity of daily inhaled amphotericin B. Am J Clin Oncol. 1993;16:43–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by a grant from the 2014 scholarship awards for Masters and Ph.D. studies under Thailand’s Education Hub for Southern Region of ASEAN countries (TEH-AC) and National Research Council of Thailand (PHA610372S), Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teerapol Srichana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Biodistribution and histopathology studies were performed that strictly followed the ethical guidelines approved by the animal ethics committee, Prince of Songkla University (MOE 0521.11/522, Ref. 08/2015).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, F., Nopparat, J., Javed, I. et al. Biodistribution and histopathology studies of amphotericin B sodium deoxycholate sulfate formulation following intratracheal instillation in rat models. Drug Deliv. and Transl. Res. 10, 59–69 (2020). https://doi.org/10.1007/s13346-019-00662-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00662-x

Keywords

Navigation