Skip to main content

Advertisement

Log in

Global updates in the treatment of gastric cancer: a systematic review. Part 1: staging, classification and surgical treatment

  • Review Article
  • Published:
Updates in Surgery Aims and scope Submit manuscript

Abstract

Gastric cancer (GC) is the fifth malignancy and the third cause of cancer death worldwide, according to the global cancer statistics presented in 2018. Its definition and staging have been revised in the eight edition of the AJCC/TNM classification, which took effect in 2018. Novel molecular classifications for GC have been recently established and the process of translating these classifications into clinical practice is ongoing. The cornerstone of GC treatment is surgical, in a context of multimodal therapy. Surgical treatment is being standardized, and is evolving according to new anatomical concepts and to the recent technological developments. This is leading to a massive improvement in the use of mini-invasive techniques. Mini-invasive techniques aim to be equivalent to open surgery from an oncologic point of view, with better short-term outcomes. The persecution of better short-term outcomes also includes the optimization of the perioperative management, which is being implemented on large scale according to the enhanced recovery after surgery principles. In the era of precision medicine, multimodal treatment is also evolving. The long-time-awaited results of many trials investigating the role for preoperative and postoperative management have been published, changing the clinical practice. Novel investigations focused both on traditional chemotherapeutic regimens and targeted therapies are currently ongoing. Modern platforms increase the possibility for further standardization of the different treatments, promote the use of big data, and open new possibilities for surgical learning. This systematic review in two parts assesses all the current updates in GC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA (2018) Global Cancer Statistics 2018: GLof Incidence and Mortality World in 185 Countries. CA Cancer J ClinAnticancer Res. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Amin MB, Edge S, Greene F et al (2016) AJCC cancer staging manual, 8th edn. Springer, New York

    Google Scholar 

  3. Network TCGAR (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513(7517):202–209. https://doi.org/10.1038/nature13480

    Article  CAS  Google Scholar 

  4. Cristescu R et al (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21(5):449–456. https://doi.org/10.1038/nm.3850

    Article  CAS  PubMed  Google Scholar 

  5. Bang Y-J et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697. https://doi.org/10.1016/S0140-6736(10)61121-X

    Article  CAS  PubMed  Google Scholar 

  6. Wilke H et al (2014) Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 15(11):1224–1235. https://doi.org/10.1016/S1470-2045(14)70420-6

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs CS et al (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39. https://doi.org/10.1016/S0140-6736(13)61719-5

    Article  CAS  PubMed  Google Scholar 

  8. NCCN (2019) NCCN clinical practice guidelines in oncology. Gastric cancer. version 2.2019. NCCN

  9. Smyth EC et al (2016) Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. https://doi.org/10.1093/annonc/mdw350

    Article  PubMed  Google Scholar 

  10. Japanese Gastric Cancer Association (2018) Japanese gastric cancer treatment guidelines 2018 (ver. 5) [in Japanese]. Gastric Cancer 20:1–91

    Article  Google Scholar 

  11. G. C. of the K. G. C. A. (KGCA) and D. W. G. & R. Panel (2019) Korean Practice Guideline for Gastric Cancer 2018: an evidence-based, multi-disciplinary approach. J Gastric Cancer 19(1):1. https://doi.org/10.5230/JGC.2019.19.E8

    Article  Google Scholar 

  12. Xie D et al (2015) Proximal segmentation of the dorsal mesogastrium reveals new anatomical implications for laparoscopic surgery. Sci Rep 5(1):16287. https://doi.org/10.1038/srep16287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu D et al (2009) Positive lymph node ratio is an independent prognostic factor in gastric cancer after d2 resection regardless of the examined number of lymph nodes. Ann Surg Oncol 16(2):319–326. https://doi.org/10.1245/s10434-008-0240-4

    Article  PubMed  Google Scholar 

  14. Jongerius EJ et al (2016) Role of omentectomy as part of radical surgery for gastric cancer. Br J Surg 103(11):1497–1503. https://doi.org/10.1002/bjs.10149

    Article  CAS  PubMed  Google Scholar 

  15. Kurokawa Y et al (2018) Bursectomy versus omentectomy alone for resectable gastric cancer (JCOG1001): a phase 3, open-label, randomised controlled trial. Lancet Gastroenterol Hepatol 3(7):460–468. https://doi.org/10.1016/S2468-1253(18)30090-6

    Article  PubMed  Google Scholar 

  16. Yu J et al (2019) Effect of laparoscopic vs open distal gastrectomy on 3-year disease-free survival in patients with locally advanced gastric cancer. JAMA 321(20):1983. https://doi.org/10.1001/jama.2019.5359

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hyung WJ et al (2019) A feasibility study of laparoscopic total gastrectomy for clinical stage I gastric cancer: a prospective multi-center phase II clinical trial, KLASS 03. Gastric Cancer. https://doi.org/10.1007/s10120-018-0864-4

    Article  PubMed  Google Scholar 

  18. Kim HH et al (2019) Effect of laparoscopic distal gastrectomy vs open distal gastrectomy on long-term survival among patients with stage i gastric cancer: The KLASS-01 Randomized Clinical Trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.6727

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kong S-H, Bae S-W, Suh Y-S, Lee H-J, Yang H-K (2018) Near-infrared fluorescence lymph node navigation using indocyanine green for gastric cancer surgery. J Minim Invasive Surg 21(3):95–105. https://doi.org/10.7602/jmis.2018.21.3.95

    Article  Google Scholar 

  20. Al-Batran S-E et al (2018) Perioperative chemotherapy with docetaxel, oxaliplatin, and fluorouracil/leucovorin (FLOT) versus epirubicin, cisplatin, and fluorouracil or capecitabine (ECF/ECX) for resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma (FLOT4-AIO): a mul. J Clin Oncol. https://doi.org/10.1200/jco.2017.35.15_suppl.4004

    Article  Google Scholar 

  21. Al-Batran S-E et al (2017) The RENAISSANCE (AIO-FLOT5) trial: effect of chemotherapy alone vs. chemotherapy followed by surgical resection on survival and quality of life in patients with limited-metastatic adenocarcinoma of the stomach or esophagogastric junction—a phase III trial of the German AIO/CAO-V/CAOGI. BMC Cancer 17(1):893. https://doi.org/10.1186/s12885-017-3918-9

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nct, FLOT vs. FLOT/Ramucirumab for Perioperative Therapy of Gastric or GEJ Cancer (RAMSES). https://clinicaltrials.gov/show/nct02661971, 2016.

  23. Bang Y-J et al (2019) KEYNOTE-585: Phase III study of perioperative chemotherapy with or without pembrolizumab for gastric cancer. Futur Oncol 15(9):943–952

    Article  CAS  Google Scholar 

  24. Ikoma N et al (2017) Patterns of Initial Recurrence in Gastric Adenocarcinoma in the Era of Preoperative Therapy. Ann Surg Oncol. https://doi.org/10.1245/s10434-017-5838-y

    Article  PubMed  Google Scholar 

  25. Sautner T, Hofbauer F, Depisch D, Schiessel R, Jakesz R (1994) Adjuvant intraperitoneal cisplatin chemotherapy does not improve long- term survival after surgery for advanced gastric cancer. J Clin Oncol. https://doi.org/10.1200/JCO.1994.12.5.970

    Article  PubMed  Google Scholar 

  26. Rosen HR et al (1998) Adjuvant intraperitoneal chemotherapy with carbon-adsorbed mitomycin in patients with gastric cancer: Results of a randomized multicenter trial of the Austrian Working Group for Surgical Oncology. J Clin Oncol. https://doi.org/10.1200/JCO.1998.16.8.2733

    Article  PubMed  Google Scholar 

  27. Fujimoto S, Takahashi M, Mutou T, Kobayashi K, Toyosawa T (1999) Successful intraperitoneal hyperthermic chemoperfusion for the prevention of postoperative peritoneal recurrence in patients with advanced gastric carcinoma. Cancer. https://doi.org/10.1002/(SICI)1097-0142(19990201)85:3%3c529:AID-CNCR3%3e3.0.CO;2-9

    Article  PubMed  Google Scholar 

  28. Yonemura Y et al (2001) Intraoperative chemohyperthermic peritoneal perfusion as an adjuvant to gastric cancer: final results of a randomized controlled study. Hepatogastroenterology 48:1776–1882

    CAS  PubMed  Google Scholar 

  29. Skoropad V, Berdov B, Zagrebin V (2002) Concentrated preoperative radiotherapy for resectable gastric cancer: 20-years follow-up of a randomized trial. J Surg Oncol 80(2):72–78. https://doi.org/10.1002/jso.10102

    Article  PubMed  Google Scholar 

  30. Wong RKS, Jang R, Darling G (2015) Postoperative chemoradiotherapy vs preoperative chemoradiotherapy for locally advanced (operable) gastric cancer: Clarifying the role and technique of radiotherapy. J Gastroint Oncol 6(1):89–107. https://doi.org/10.3978/j.issn.2078-6891.2014.089

    Article  Google Scholar 

  31. Charalampakis N et al (2016) The proportion of signet ring cell component in patients with localized gastric adenocarcinoma correlates with the degree of response to pre-operative chemoradiation. Oncology 90(5):239–247. https://doi.org/10.1159/000443506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sano T et al (2017) Proposal of a new stage grouping of gastric cancer for TNM classification: international Gastric Cancer Association staging project. Gastric Cancer 20(2):217–225. https://doi.org/10.1007/s10120-016-0601-9

    Article  PubMed  Google Scholar 

  33. Kim C-Y, Yang D-H (2009) Adjustment of N stages of gastric cancer by the ratio between the metastatic and examined lymph nodes. Ann Surg Oncol 16(7):1868–1874. https://doi.org/10.1245/s10434-009-0430-8

    Article  PubMed  Google Scholar 

  34. Smith DD, Nelson RA, Schwarz RE (2014) A comparison of five competing lymph node staging schemes in a cohort of resectable gastric cancer patients. Ann Surg Oncol 21(3):875–882. https://doi.org/10.1245/s10434-013-3356-0

    Article  PubMed  Google Scholar 

  35. Agnes A et al (2019) Ratio-based staging systems are better than the 7th and 8th editions of the TNM in stratifying the prognosis of gastric cancer patients: a multicenter retrospective study. J Surg Oncol. https://doi.org/10.1002/jso.25411

    Article  PubMed  Google Scholar 

  36. Spolverato G et al (2015) Prognostic performance of different lymph node staging systems after curative intent resection for gastric adenocarcinoma. Ann Surg 262(6):991–998. https://doi.org/10.1097/SLA.0000000000001040

    Article  PubMed  Google Scholar 

  37. Huang JY et al (2019) The prognosis value of lymphatic vessel invasion in pn0 gastric cancer patients with insufficient examined lymph nodes. J Gastroint Surg 24:299–306

    Article  Google Scholar 

  38. Japanese Gastric Cancer Association Japanese Classification of Gastric Carcinoma, the 15th Edition (in Japanese).

  39. Komatsu S, Otsuji E (2019) Essential updates 2017/2018: Recent topics in the treatment and research of gastric cancer in Japan. Ann Gastroenterol Surg. https://doi.org/10.1002/ags3.12284

    Article  PubMed  PubMed Central  Google Scholar 

  40. Borrmann R (1926) Geschwülste des Magens und Duodenums. In: Verdauungsschlauch. Springer, Vienna, pp 812–1054.

  41. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand 64:31–49. https://doi.org/10.1002/1097-0142(197706)39:6%3c2475:AID-CNCR2820390626%3e3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  42. Bosman FT, Carneiro F, Hruban RH, Theise ND (2010) WHO classification of tumours of the digestive system, fourth edition. Int Agency Res Cancer 3(3):417

    Google Scholar 

  43. Haggitt RC (1988) Histogenesis and precursors of human gastric cancer: research and practice. Am J Clin Pathol. https://doi.org/10.1093/ajcp/89.5.699a

    Article  Google Scholar 

  44. Palli D et al (1991) Reproducibility of histologic classification of gastric cancer. Br J Cancer. https://doi.org/10.1038/bjc.1991.171

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mariette C et al (2019) Consensus on the pathological definition and classification of poorly cohesive gastric carcinoma. Gastric Cancer. https://doi.org/10.1007/s10120-018-0868-0

    Article  PubMed  Google Scholar 

  46. Taghavi S, Jayarajan SN, Davey A, Willis AI (2012) Prognostic significance of signet ring gastric cancer. J Clin Oncol. https://doi.org/10.1200/JCO.2012.42.6635

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marrelli D et al (2011) Changing clinical and pathological features of gastric cancer over time. Br J Surg. https://doi.org/10.1002/bjs.7528

    Article  PubMed  Google Scholar 

  48. Wu H, Rusiecki JA, Zhu K, Potter J, Devesa SS (2009) Stomach carcinoma incidence patterns in the United States by histologic type and anatomic site. Cancer Epidemiol Biomarkers Prev. https://doi.org/10.1158/1055-9965.EPI-09-0250

    Article  PubMed  PubMed Central  Google Scholar 

  49. Messager M, Lefevre JH, Pichot-Delahaye V, Souadka A, Piessen G, Mariette C (2011) The impact of perioperative chemotherapy on survival in patients with gastric signet ring cell adenocarcinoma: a multicenter comparative study. Ann Surg 254(5):684–693 (discussion 693). 10.1097/SLA.0b013e3182352647.

  50. Piessen G et al (2013) Phase II/III multicentre randomised controlled trial evaluating a strategy of primary surgery and adjuvant chemotherapy versus peri-operative chemotherapy for resectable gastric signet ring cell adenocarcinomas – PRODIGE 19 – FFCD1103 – ADCI002. BMC Cancer 13(1):281. https://doi.org/10.1186/1471-2407-13-281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kwon CH et al (2018) Gastric poorly cohesive carcinoma: a correlative study of mutational signatures and prognostic significance based on histopathological subtypes. Histopathology. https://doi.org/10.1111/his.13383

    Article  PubMed  Google Scholar 

  52. Cristescu R, Lee J, Nebozhyn M, Kim K, Tang JC et al (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21:449–456

    Article  CAS  Google Scholar 

  53. Liu X, Meltzer SJ (2017) Gastric cancer in the era of precision medicine. Cell Mol Gastroenterol Hepatol 3(3):348–358. https://doi.org/10.1016/j.jcmgh.2017.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tirino G et al (2018) What’s new in gastric cancer: the therapeutic implications of molecular classifications and future perspectives. Int J Mol Sci 19:2659

    Article  Google Scholar 

  55. Gonzalez RS, Messing S, Tu X, McMahon LA, Whitney-Miller CL (2016) Immunohistochemistry as a surrogate for molecular subtyping of gastric adenocarcinoma. Hum Pathol. https://doi.org/10.1016/j.humpath.2016.06.003

    Article  PubMed  Google Scholar 

  56. Lee D, Ham I-H, Son SY, Han S-U, Kim Y-B, Hur H (2017) Intratumor stromal proportion predicts aggressive phenotype of gastric signet ring cell carcinomas. Gastric Cancer 20(4):591–601. https://doi.org/10.1007/s10120-016-0669-2

    Article  CAS  PubMed  Google Scholar 

  57. Peng C, Liu J, Yang G, Li Y (2017) The tumor-stromal ratio as a strong prognosticator for advanced gastric cancer patients: proposal of a new TSNM staging system. J Gastroenterol. https://doi.org/10.1007/s00535-017-1379-1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kemi N et al (2018) Tumour-stroma ratio and prognosis in gastric adenocarcinoma. Br J Cancer. https://doi.org/10.1038/s41416-018-0202-y

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zeng D et al (2018) Gene expression profiles for a prognostic immunoscore in gastric cancer. Br J Surg 105(10):1338–1348. https://doi.org/10.1002/bjs.10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang Y et al (2016) ImmunoScore signature: a prognostic and predictive tool in gastric cancer. Ann Surg 267:204–513

    Google Scholar 

  61. Peng C, Liu J, Yang G, Li Y (2018) The tumor-stromal ratio as a strong prognosticator for advanced gastric cancer patients: proposal of a new TSNM staging system. J Gastroenterol. https://doi.org/10.1007/s00535-017-1379-1

    Article  PubMed  Google Scholar 

  62. Kim SY et al (2015) Deregulation of immune response genes in patients with epstein-barr virus-associated gastric cancer and outcomes. Gastroenterology 148(1):137–147.e9. https://doi.org/10.1053/j.gastro.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  63. Ham IH, Lee D, Hur H (2019) Role of cancer-associated fibroblast in gastric cancer progression and resistance to treatments. J Oncol. https://doi.org/10.1155/2019/6270784

    Article  PubMed  PubMed Central  Google Scholar 

  64. Räihä MR, Puolakkainen PA (2018) Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: a review. Chronic Dis Transl Med 4(3):156–163. https://doi.org/10.1016/j.cdtm.2018.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wen T et al (2017) A Four-factor immunoscore system that predicts clinical outcome for Stage II/III gastric cancer. Cancer Immunol Res 5(7):524–534. https://doi.org/10.1158/2326-6066.CIR-16-0381

    Article  CAS  PubMed  Google Scholar 

  66. Jiang Y et al (2018) ImmunoScore signature: a prognostic and predictive tool in gastric cancer. Ann Surg 267(3):504–513. https://doi.org/10.1097/SLA.0000000000002116

    Article  PubMed  Google Scholar 

  67. Lei Y et al (2017) The clinicopathological parameters and prognostic significance of HER2 expression in gastric cancer patients: a meta-analysis of literature. World J Surg Oncol 15(1):68. https://doi.org/10.1186/s12957-017-1132-5

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pietrantonio F et al (2018) Biomarkers of primary resistance to trastuzumab in HER2-positive metastatic gastric cancer patients: the AMNESIA case-control study. Clin Cancer Res 24(5):1082–1089. https://doi.org/10.1158/1078-0432.CCR-17-2781

    Article  CAS  PubMed  Google Scholar 

  69. Díaz-Serrano A et al (2018) Genomic profiling of HER2-positive gastric cancer: PI3K/Akt/mTOR pathway as predictor of outcomes in HER2-positive advanced gastric cancer treated with trastuzumab. Oncologist 23(9):1092–1102. https://doi.org/10.1634/theoncologist.2017-0379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yashiro M, Inoue T, Nishioka N, Matsuoka T, Boland CR, Hirakawa K (2009) Allelic imbalance at p53 and microsatellite instability are predictive markers for resistance to chemotherapy in gastric carcinoma. Ann Surg Oncol 16(10):2926–2935. https://doi.org/10.1245/s10434-009-0590-6

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smyth EC et al (2017) Mismatch repair deficiency, microsatellite instability, and survival: an exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol 3(9):1197–1203. https://doi.org/10.1001/jamaoncol.2016.6762

    Article  PubMed  Google Scholar 

  72. Roh CK et al (2019) Single patient classifier assay, microsatellite instability, and epstein-barr virus status predict clinical outcomes in stage II/III gastric cancer: results from CLASSIC trial. Yonsei Med J 60(2):132. https://doi.org/10.3349/YMJ.2019.60.2.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Toor SM, Sasidharan Nair V, Decock J, Elkord E (2019) Immune checkpoints in the tumor microenvironment. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.06.021

    Article  PubMed  Google Scholar 

  74. Kang Y-K et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390(10111):2461–2471. https://doi.org/10.1016/S0140-6736(17)31827-5

    Article  CAS  PubMed  Google Scholar 

  75. Fuchs CS et al (2018) Fuchs et al safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2018.0013

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fashoyin-Aje L et al (2019) FDA Approval summary: pembrolizumab for recurrent locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma expressing PD-L1. Oncologist. https://doi.org/10.1634/theoncologist.2018-0221

    Article  PubMed  Google Scholar 

  77. Shitara K et al (2018) Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. https://doi.org/10.1016/S0140-6736(18)31257-1

    Article  PubMed  Google Scholar 

  78. Gong J, Chao J (2019) When survival curves cross: are we at a crossroads of immunotherapy in gastric cancer? Ann Transl Med 7:S35

    Article  CAS  Google Scholar 

  79. Wang L et al (2018) Programmed death-ligand 1 expression in gastric cancer: correlation with mismatch repair deficiency and HER2-negative status. Cancer Med. https://doi.org/10.1002/cam4.1502

    Article  PubMed  PubMed Central  Google Scholar 

  80. Seo AN et al (2017) Intratumoural PD-l1 expression is associated with worse survival of patients with epstein–barr virus-associated gastric cancer. Br J Cancer. https://doi.org/10.1038/bjc.2017.369

    Article  PubMed  PubMed Central  Google Scholar 

  81. Valentini A, Di Pinto F, Coletta S, Guerra V, Armentano R, Caruso M (2019) Tumor microenvironment immune types in gastric cancer are associated with mismatch repair however, not HER2 status. Oncol Lett. https://doi.org/10.3892/ol.2019.10513

    Article  PubMed  PubMed Central  Google Scholar 

  82. Waddell T, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D (2013) Gastric cancer+: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 24(SUPPL):6. https://doi.org/10.1093/annonc/mdt344

    Article  Google Scholar 

  83. Songun I, Putter H, Kranenbarg EM-K, Sasako M, Van de Velde CJ (2010) Surgical treatment of gastric cancer: 15-year follow-up results of the randomised nationwide Dutch D1D2 trial. Lancet Oncol 11(5):439–449. https://doi.org/10.1016/S1470-2045(10)70070-X

    Article  PubMed  Google Scholar 

  84. Japanese Gastric Cancer Association (2017) Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 20(1):1–19. https://doi.org/10.1007/s10120-016-0622-4

    Article  Google Scholar 

  85. Nakajima T (2005) Historical review of research and treatment of gastric cancer in Japan: clinical aspect. The diversity of gastric carcinoma. Springer Tokyo, pp 29–47

  86. Cuschieri A et al (1999) Patient survival after D1 and D2 resections for gastric cancer: long-term results of the MRC randomized surgical trial. Surgical Co-operative Group. Br J Cancer 79(9–10):1522–1530. https://doi.org/10.1016/S0959-8049(01)80998-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Csendes A, Burdiles P, Rojas J, Braghetto I, Diaz JC, Maluenda F (2002) A prospective randomized study comparing D2 total gastrectomy versus D2 total gastrectomy plus splenectomy in 187 patients with gastric carcinoma. Surgery. https://doi.org/10.1067/msy.2002.121891

    Article  PubMed  Google Scholar 

  88. Yu W, Choi GS, Chung HY (2006) Randomized clinical trial of splenectomy versus splenic preservation in patients with proximal gastric cancer. Br J Surg. https://doi.org/10.1002/bjs.5353

    Article  PubMed  Google Scholar 

  89. Cuschieri A et al (1999) Patient survival after D1 and D2 resections for gastric cancer: long-term results of the MRC randomized surgical trial. Br J Cancer. https://doi.org/10.1038/sj.bjc.6690243

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sano T et al (2017) Randomized controlled trial to evaluate splenectomy in total gastrectomy for proximal gastric carcinoma. Ann Surg. https://doi.org/10.1097/SLA.0000000000001814

    Article  PubMed  Google Scholar 

  91. Ma Z et al (2019) Laparoscopic splenic hilar lymph node dissection for advanced gastric cancer: to be or not to be. Ann Transl Med 7:343

    Article  Google Scholar 

  92. Huang CM et al (2017) The effects of laparoscopic spleen-preserving splenic hilar lymphadenectomy on the surgical outcome of proximal gastric cancer: a propensity score-matched, case–control study. Surg Endosc. https://doi.org/10.1007/s00464-016-5126-0

    Article  PubMed  Google Scholar 

  93. Chen QY et al (2018) Safety and prognostic impact of prophylactic laparoscopic superior mesenteric vein (No 14v) lymph node dissection for lower-third gastric cancer: a propensity score-matched case–control study. Surg Endosc. https://doi.org/10.1007/s00464-017-5837-x

    Article  PubMed  PubMed Central  Google Scholar 

  94. Eom BW et al (2014) Improved survival after adding dissection of the superior mesenteric vein lymph node (14v) to standard D2 gastrectomy for advanced distal gastric cancer. Surg. https://doi.org/10.1016/j.surg.2013.08.019

    Article  Google Scholar 

  95. Zhang J et al (2019) Is it worthy of adding dissection of the superior mesenteric vein lymph node (14v) to standard D2 gastrectomy for distal gastric cancers with No. 6 lymph node metastasis? Clin Transl Oncol. https://doi.org/10.1007/s12094-019-02103-0

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sasako M et al (2008) D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N Engl J Med. https://doi.org/10.1056/NEJMoa0707035

    Article  PubMed  Google Scholar 

  97. Haverkamp L, Brenkman HJF, Ruurda JP, Ten Kate FJW, Van Hillegersberg R (2016) The oncological value of omentectomy in gastrectomy for cancer. J Gastrointest Surg 20(5):885–890. https://doi.org/10.1007/s11605-016-3092-4

    Article  PubMed  PubMed Central  Google Scholar 

  98. Barchi LC et al (2019) Total omentectomy in gastric cancer surgery: is it always necessary? Arq Bras Cir Dig 32(1):e1425. https://doi.org/10.1590/0102-672020180001e1425

    Article  PubMed  PubMed Central  Google Scholar 

  99. Hasegawa S et al (2013) A randomized phase II trial of omentum-preserving gastrectomy for advanced gastric cancer. Jpn J Clin Oncol 43(2):214–216. https://doi.org/10.1093/jjco/hys208

    Article  PubMed  Google Scholar 

  100. Nie RC et al (2018) Bursectomy for advanced gastric cancer: an update meta-analysis. World J Surg Oncol. https://doi.org/10.1186/s12957-018-1354-1

    Article  PubMed  PubMed Central  Google Scholar 

  101. Xiong B, Ma L, Huang W, Cheng Y, Luo H, Wang K (2019) Efficiency of bursectomy in patients with resectable gastric cancer: an updated meta-analysis. Eur J Surg Oncol 45:1483–1492

    Article  Google Scholar 

  102. Heald RJ, Santiago I, Pares O, Carvalho C, Figueiredo N (2017) The perfect total mesorectal excision obviates the need for anything else in the management of most rectal cancers. Clin Colon Rectal Surg 30(5):324–332. https://doi.org/10.1055/s-0037-1606109

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hohenberger W, Weber K, Matzel K, Papadopoulos T, Merkel S (2009) Standardized surgery for colonic cancer: complete mesocolic excision and central ligation - technical notes and outcome. Color Dis 11(4):354–364. https://doi.org/10.1111/j.1463-1318.2008.01735.x

    Article  CAS  Google Scholar 

  104. Shen J et al (2018) Modularized laparoscopic regional en bloc mesogastrium excision (rEME) based on membrane anatomy for distal gastric cancer. Surg Endosc 32(11):4698–4705. https://doi.org/10.1007/s00464-018-6375-x

    Article  PubMed  PubMed Central  Google Scholar 

  105. Xie D et al (2016) Short-term outcomes of laparoscopic D2 lymphadenectomy with complete mesogastrium excision for advanced gastric cancer. Surg Endosc 30(11):5138–5139. https://doi.org/10.1007/s00464-016-4847-4

    Article  PubMed  Google Scholar 

  106. Shen J et al (2018) Prospective randomized controlled trial to compare laparoscopic distal gastrectomy (D2 lymphadenectomy plus complete mesogastrium excision, D2 + CME) with conventional D2 lymphadenectomy for locally advanced gastric adenocarcinoma: study protocol for a randomized controlled trial. Trials 19(1):432. https://doi.org/10.1186/s13063-018-2790-5

    Article  PubMed  PubMed Central  Google Scholar 

  107. Son T (2016) Laparoscopic gastric cancer surgery: current evidence and future perspectives. World J Gastroenterol 22(2):727. https://doi.org/10.3748/wjg.v22.i2.727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kurokawa Y, Katai H, Fukuda H, Sasako M (2008) Phase II study of laparoscopy-assisted distal gastrectomy with nodal dissection for clinical stage I gastric cancer: Japan clinical oncology group study JCOG0703. Jpn J Clin Oncol. https://doi.org/10.1093/jjco/hyn055

    Article  PubMed  Google Scholar 

  109. Katai H et al (2017) Short-term surgical outcomes from a phase III study of laparoscopy-assisted versus open distal gastrectomy with nodal dissection for clinical stage IA/IB gastric cancer: Japan Clinical Oncology Group Study JCOG0912. Gastric Cancer 20(4):699–708. https://doi.org/10.1007/s10120-016-0646-9

    Article  PubMed  Google Scholar 

  110. Kim W et al (2016) Decreased morbidity of laparoscopic distal gastrectomy compared with open distal gastrectomy for stage I gastric cancer: Short-term outcomes from a multicenter randomized controlled trial (KLASS-01). Ann Surg. https://doi.org/10.1097/SLA.0000000000001346

    Article  PubMed  Google Scholar 

  111. Katai H et al (2019) Single-arm confirmatory trial of laparoscopy-assisted total or proximal gastrectomy with nodal dissection for clinical stage I gastric cancer: Japan Clinical Oncology Group study JCOG1401. Gastric Cancer. https://doi.org/10.1007/s10120-019-00929-9

    Article  PubMed  Google Scholar 

  112. He H et al (2018) Study on safety of laparoscopic total gastrectomy for clinical stage i gastric cancer: the protocol of the CLASS02-01 multicenter randomized controlled clinical trial. BMC Cancer. https://doi.org/10.1186/s12885-018-4846-z

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hu Y et al (2016) Morbidity and mortality of laparoscopic versus open d2 distal gastrectomy for advanced gastric cancer: a randomized controlled trial. J Clin Oncol 34(12):1350–1357. https://doi.org/10.1200/JCO.2015.63.7215

    Article  PubMed  Google Scholar 

  114. Inaki N et al (2015) A Multi-institutional, prospective, phase II feasibility study of laparoscopy-assisted distal gastrectomy with D2 lymph node dissection for locally advanced gastric cancer (JLSSG0901). Surg World J. https://doi.org/10.1007/s00268-015-3160-z

    Article  Google Scholar 

  115. Lee S-W et al (2017) Short-term outcomes from a multi-institutional, phase III study of laparoscopic versus open distal gastrectomy with D2 lymph node dissection for locally advanced gastric cancer (JLSSG0901). J Clin Oncol 35(15_suppl):4029–4029. https://doi.org/10.1200/JCO.2017.35.15_suppl.4029

    Article  Google Scholar 

  116. Lee H-J et al (2019) Short-term outcomes of a multicenter randomized controlled trial comparing laparoscopic distal gastrectomy With D2 lymphadenectomy to open distal gastrectomy for locally advanced gastric cancer (KLASS-02-RCT). Ann Surg. https://doi.org/10.1097/sla.0000000000003217

    Article  PubMed  PubMed Central  Google Scholar 

  117. Haverkamp L et al (2015) Laparoscopic versus open gastrectomy for gastric cancer, a multicenter prospectively randomized controlled trial (LOGICA-trial). BMC Cancer. https://doi.org/10.1186/s12885-015-1551-z

    Article  PubMed  PubMed Central  Google Scholar 

  118. Straatman J et al (2015) Surgical techniques, open versus minimally invasive gastrectomy after chemotherapy (STOMACH trial): Study protocol for a randomized controlled trial. Trials. https://doi.org/10.1186/s13063-015-0638-9

    Article  PubMed  PubMed Central  Google Scholar 

  119. Suda K, Nakauchi M, Inaba K, Ishida Y, Uyama I (2016) Robotic surgery for upper gastrointestinal cancer: current status and future perspectives. Dig Endosc. https://doi.org/10.1111/den.12697

    Article  PubMed  Google Scholar 

  120. Obermannová R, Lordick F, Petruželka L (2018) Multidisciplinary approach to oesophageal and gastric cancer. Current Media, Chicago

    Google Scholar 

  121. Ojima T et al (2018) Robotic versus laparoscopic gastrectomy with lymph node dissection for gastric cancer: study protocol for a randomized controlled trial. Trials. https://doi.org/10.1186/s13063-018-2810-5

    Article  PubMed  PubMed Central  Google Scholar 

  122. Desiderio J et al (2015) Robotic, laparoscopic and open surgery for gastric cancer compared on surgical, clinical and oncological outcomes. A multi-institutional chart review: A study protocol of the International study group on Minimally Invasive surgery for GASTRIc Cancer-IMIGA. BMJ Open. https://doi.org/10.1136/bmjopen-2015-008198

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Biondi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnes, A., Biondi, A., Laurino, A. et al. Global updates in the treatment of gastric cancer: a systematic review. Part 1: staging, classification and surgical treatment. Updates Surg 72, 341–353 (2020). https://doi.org/10.1007/s13304-020-00736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13304-020-00736-3

Keywords

Navigation