Skip to main content

Advertisement

Log in

The role of stem cells in benign tumors

  • Review
  • Published:
Tumor Biology

Abstract

As stem cells contribute to the development and homeostasis of normal adult tissues, malfunction of stem cells in self-renewal and differentiation has been associated with tumorigenesis. A growing number of evidences indicating that tumor initiating cells play a crucial role, not only in malignancies, but also in generation and development of benign tumors. Here we offer an overview of the identification and functional characterization of benign tumor initiating cells in several tissues and organs, which typically show capacities of uncontrolled self-renewal to fuel the tumor growth and abnormal differentiation to give rise to tumor heterogeneity. They may originate from alteration of normal stem cells, which confer the benign tumor initiating cells with different repertoire of “stemness”. The plastic functions of benign tumor initiating cells are determined by niche regulation mediated via several signaling and epigenetic cues. Therefore, targeting stem cell function represents an important strategy for understanding the biology and management of benign tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.

    Article  CAS  PubMed  Google Scholar 

  2. Brack AS, Rando TA. Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell. 2012;10:504–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang CL, Zou Y, He W, Gage FH, Evans RM. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature. 2008;451:1004–7.

    Article  CAS  PubMed  Google Scholar 

  4. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149–55.

    Article  CAS  PubMed  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang JP, Hui YJ, Wang ST, Huang YC, Chiang ER, Liu CL, et al. Fibromatosis stem cells rather than bone-marrow mesenchymal stem cells recapitulate a murine model of fibromatosis. Biochem Biophys Res Commun. 2011;408:269–75.

    Article  CAS  PubMed  Google Scholar 

  9. Robinson D, Segal M, Nevo Z. Giant cell tumor of bone. The role of fibroblast growth factor 3 positive mesenchymal stem cells in its pathogenesis. Pathobiology. 2002;70:333–42.

    Article  PubMed  Google Scholar 

  10. Wulling M, Delling G, Kaiser E. The origin of the neoplastic stromal cell in giant cell tumor of bone. Hum Pathol. 2003;34:983–93.

    Article  PubMed  Google Scholar 

  11. Oreffo RO, Marshall GJ, Kirchen M, Garcia C, Gallwitz WE, Chavez J, et al. Characterization of a cell line derived from a human giant cell tumor that stimulates osteoclastic bone resorption. Clin Orthop Relat Res. 1993;229-41.

  12. Zhang Q, Yamaza T, Kelly AP, Shi S, Wang S, Brown J, et al. Tumor-like stem cells derived from human keloid are governed by the inflammatory niche driven by IL-17/IL-6 axis. PLoS One. 2009;4:e7798.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lin TM, Chang HW, Wang KH, Kao AP, Chang CC, Wen CH, et al. Isolation and identification of mesenchymal stem cells from human lipoma tissue. Biochem Biophys Res Commun. 2007;361:883–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sneddon JB, Werb Z. Location, location, location: the cancer stem cell niche. Cell Stem Cell. 2007;1:607–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu Y, Fuhr J, Boye E, Gyorffy S, Soker S, Atala A, et al. Mesenchymal stem cells and adipogenesis in hemangioma involution. Stem Cells. 2006;24:1605–12.

    Article  CAS  PubMed  Google Scholar 

  16. Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest. 2008;118:2592–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Makiguchi T, Terashi H, Hashikawa K, Yokoo S, Kusaka J. Osteolipoma in the glabella: pathogenesis associated with mesenchymal lipoma-derived stem cells. J Craniofac Surg. 2013;24:1310–3.

    Article  PubMed  Google Scholar 

  18. Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, et al. Isolation of tumour stem-like cells from benign tumours. Br J Cancer. 2009;101:303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ono M, Qiang W, Serna VA, Yin P, Coon JS, Navarro A, et al. Role of stem cells in human uterine leiomyoma growth. PLoS One. 2012;7:e36935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du H, Taylor HS. Contribution of bone marrow-derived stem cells to endometrium and endometriosis. Stem Cells. 2007;25:2082–6.

    Article  CAS  PubMed  Google Scholar 

  21. Le LQ, Shipman T, Burns DK, Parada LF. Cell of origin and microenvironment contribution for NF1-associated dermal neurofibromas. Cell Stem Cell. 2009;4:453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams JP, Wu J, Johansson G, Rizvi TA, Miller SC, Geiger H, et al. Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell. 2008;3:658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schepers AG, Snippert HJ, Stange DE, van den Born M, van Es JH, van de Wetering M, et al. Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science. 2012;337:730–5.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu L, Gibson P, Currle DS, Tong Y, Richardson RJ, Bayazitov IT, et al. Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature. 2009;457:603–7.

    Article  CAS  PubMed  Google Scholar 

  25. May R, Riehl TE, Hunt C, Sureban SM, Anant S, Houchen CW. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells. 2008;26:630–7.

    Article  PubMed  Google Scholar 

  26. Al-Kharusi MR, Smartt HJ, Greenhough A, Collard TJ, Emery ED, Williams AC, et al. LGR5 promotes survival in human colorectal adenoma cells and is upregulated by PGE2: implications for targeting adenoma stem cells with NSAIDs. Carcinogenesis. 2013;34:1150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Figueira PG, Abrao MS, Krikun G, Taylor HS. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann N Y Acad Sci. 2011;1221:10–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Forte A, Schettino MT, Finicelli M, Cipollaro M, Colacurci N, Cobellis L, et al. Expression pattern of stemness-related genes in human endometrial and endometriotic tissues. Mol Med. 2009;15:392–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jinnin M, Ishihara T, Boye E, Olsen BR. Recent progress in studies of infantile hemangioma. J Dermatol. 2010;37:283–98.

    Article  PubMed  Google Scholar 

  30. Lee JY, Yang CC, Chao SC, Wong TW. Histopathological differential diagnosis of keloid and hypertrophic scar. Am J Dermatopathol. 2004;26:379–84.

    Article  PubMed  Google Scholar 

  31. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature. 2009;457:608–11.

    Article  CAS  PubMed  Google Scholar 

  32. Laws ER, Jane Jr JA. Pituitary tumors--long-term outcomes and expectations. Clin Neurosurg. 2001;48:306–19.

    CAS  PubMed  Google Scholar 

  33. Levy A. Pituitary disease: presentation, diagnosis, and management. J Neurol Neurosurg Psychiatry. 2004;75(Suppl 3):iii47–52.

    PubMed  PubMed Central  Google Scholar 

  34. Khalifa MA, Montgomery EA, Ismiil N, Azumi N. What are the CD34+ cells in benign peripheral nerve sheath tumors? Double immunostaining study of CD34 and S-100 protein. Am J Clin Pathol. 2000;114:123–6.

    Article  CAS  PubMed  Google Scholar 

  35. Rath P, Miller DC, Litofsky NS, Anthony DC, Feng Q, Franklin C, et al. Isolation and characterization of a population of stem-like progenitor cells from an atypical meningioma. Exp Mol Pathol. 2011;90:179–88.

    Article  CAS  PubMed  Google Scholar 

  36. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    Article  CAS  PubMed  Google Scholar 

  37. Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C. Defining the mode of tumour growth by clonal analysis. Nature. 2012;488:527–30.

    Article  CAS  PubMed  Google Scholar 

  38. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  40. Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H, et al. Transcriptome profile of human colorectal adenomas. Mol Cancer Res. 2007;5:1263–75.

    Article  CAS  PubMed  Google Scholar 

  41. Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18:1385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faller WJ, Jackson TJ, Knight JR, Ridgway RA, Jamieson T, Karim SA, et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature. 2015;517:497–500.

    Article  CAS  PubMed  Google Scholar 

  43. Hao HX, Xie Y, Zhang Y, Charlat O, Oster E, Avello M, et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature. 2012;485:195–200.

    Article  CAS  PubMed  Google Scholar 

  44. Koo BK, Spit M, Jordens I, Low TY, Stange DE, van de Wetering M, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature. 2012;488:665–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Kim E, Wang X, Novitch BG, Yoshikawa K, Chang LS, et al. ERK inhibition rescues defects in fate specification of Nf1-deficient neural progenitors and brain abnormalities. Cell. 2012;150:816–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie T, Spradling AC. A niche maintaining germ line stem cells in the Drosophila ovary. Science. 2000;290:328–30.

    Article  CAS  PubMed  Google Scholar 

  47. Song X, Zhu CH, Doan C, Xie T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science. 2002;296:1855–7.

    Article  CAS  PubMed  Google Scholar 

  48. Borovski T, De Sousa EMF, Vermeulen L, Medema JP. Cancer stem cell niche: the place to be. Cancer Res. 2010;71:634–9.

    Article  Google Scholar 

  49. Qu M, Song N, Chai G, Wu X, Liu W. Pathological niche environment transforms dermal stem cells to keloid stem cells: a hypothesis of keloid formation and development. Med Hypotheses. 2013;81:807–12.

    Article  CAS  PubMed  Google Scholar 

  50. Kleiman A, Keats EC, Chan NG, Khan ZA. Elevated IGF2 prevents leptin induction and terminal adipocyte differentiation in hemangioma stem cells. Exp Mol Pathol. 2013;94:126–36.

    Article  CAS  PubMed  Google Scholar 

  51. Smadja DM, Mulliken JB, Bischoff J. E-selectin mediates stem cell adhesion and formation of blood vessels in a murine model of infantile hemangioma. Am J Pathol. 2012;181:2239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Benard J, Raguenez G, Kauffmann A, Valent A, Ripoche H, Joulin V, et al. MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S. Mol Oncol. 2008;2:261–71.

    Article  PubMed  Google Scholar 

  53. Marzi I, D'Amico M, Biagiotti T, Giunti S, Carbone MV, Fredducci D, et al. Purging of the neuroblastoma stem cell compartment and tumor regression on exposure to hypoxia or cytotoxic treatment. Cancer Res. 2007;67:2402–7.

    Article  CAS  PubMed  Google Scholar 

  54. Biernaskie J, Sparling JS, Liu J, Shannon CP, Plemel JR, Xie Y, et al. Skin-derived precursors generate myelinating Schwann cells that promote remyelination and functional recovery after contusion spinal cord injury. J Neurosci. 2007;27:9545–59.

    Article  CAS  PubMed  Google Scholar 

  55. McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD. Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 2006;26:6651–60.

    Article  CAS  PubMed  Google Scholar 

  56. Staser K, Yang FC, Clapp DW. Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu Rev Pathol. 2012;7:469–95.

    Article  CAS  PubMed  Google Scholar 

  57. Yang FC, Ingram DA, Chen S, Hingtgen CM, Ratner N, Monk KR, et al. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/- mast cells. J Clin Invest. 2003;112:1851–61.

    Article  CAS  PubMed  Google Scholar 

  58. Mashour GA, Driever PH, Hartmann M, Drissel SN, Zhang T, Scharf B, et al. Circulating growth factor levels are associated with tumorigenesis in neurofibromatosis type 1. Clin Cancer Res. 2004;10:5677–83.

    Article  CAS  PubMed  Google Scholar 

  59. Ingram DA, Hiatt K, King AJ, Fisher L, Shivakumar R, Derstine C, et al. Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J Exp Med. 2001;194:57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen S, Burgin S, McDaniel A, Li X, Yuan J, Chen M, et al. Nf1-/- Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phosphatidylinositol 3-kinase. Am J Pathol. 2010;177:3125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McDaniel AS, Allen JD, Park SJ, Jaffer ZM, Michels EG, Burgin SJ, et al. Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/- mast cells. Blood. 2008;112:4646–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang FC, Chen S, Clegg T, Li X, Morgan T, Estwick SA, et al. Nf1+/- mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet. 2006;15:2421–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jaakkola S, Peltonen J, Riccardi V, Chu ML, Uitto J. Type 1 neurofibromatosis: selective expression of extracellular matrix genes by Schwann cells, perineurial cells, and fibroblasts in mixed cultures. J Clin Invest. 1989;84:253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Munchhof AM, Li F, White HA, Mead LE, Krier TR, Fenoglio A, et al. Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet. 2006;15:1858–69.

    Article  CAS  PubMed  Google Scholar 

  65. Riccardi VM. Neurofibromatosis type 1 is a disorder of dysplasia: the importance of distinguishing features, consequences, and complications. Birth Defects Res A Clin Mol Teratol. 2010;88:9–14.

    CAS  PubMed  Google Scholar 

  66. Nik AM, Reyahi A, Ponten F, Carlsson P. Foxf2 in intestinal fibroblasts reduces numbers of Lgr5(+) stem cells and adenoma formation by inhibiting Wnt signaling. Gastroenterology. 2013;144:1001–11.

    Article  CAS  PubMed  Google Scholar 

  67. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415–8.

    Article  CAS  PubMed  Google Scholar 

  68. Lunyak VV, Rosenfeld MG. Epigenetic regulation of stem cell fate. Hum Mol Genet. 2008;17:R28–36.

    Article  CAS  PubMed  Google Scholar 

  69. Fellenberg J, Lehner B, Witte D. Silencing of the UCHL1 gene in giant cell tumors of bone. Int J Cancer. 2010;127:1804–12.

    Article  CAS  PubMed  Google Scholar 

  70. Fellenberg J, Sahr H, Liu L, Schonsiegel F, Depeweg D, Lehner B, et al. Rescue of silenced UCHL1 and IGFBP4 expression suppresses clonogenicity of giant cell tumor-derived stromal cells. Cancer Lett. 2013;336:61–7.

    Article  CAS  PubMed  Google Scholar 

  71. Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17:1709–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Subbiah V, Slopis J, Hong DS, Ketonen LM, Hamilton J, McCutcheon IE, et al. Treatment of patients with advanced neurofibromatosis type 2 with novel molecularly targeted therapies: from bench to bedside. J Clin Oncol. 2012;30:e64–8.

    Article  CAS  PubMed  Google Scholar 

  73. Kim A, Dombi E, Tepas K, Fox E, Martin S, Wolters P, et al. Phase I trial and pharmacokinetic study of sorafenib in children with neurofibromatosis type I and plexiform neurofibromas. Pediatr Blood Cancer. 2013;60:396–401.

    Article  CAS  PubMed  Google Scholar 

  74. Widemann BC, Salzer WL, Arceci RJ, Blaney SM, Fox E, End D, et al. Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol. 2006;24:507–16.

    Article  CAS  PubMed  Google Scholar 

  75. Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet. 2006;7:319–27.

    Article  CAS  PubMed  Google Scholar 

  76. McCaughan JA, Holloway SM, Davidson R, Lam WW. Further evidence of the increased risk for malignant peripheral nerve sheath tumour from a Scottish cohort of patients with neurofibromatosis type 1. J Med Genet. 2007;44:463–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39:311–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We appreciate Kuiyao Qiao of Nanjing Foreign Language School for assistance with English language editing.This work was supported by the National Natural Science Foundation of China (NSFC, No.81200770), Science and Technology Acticities of Nanjing Overseas Students Preferred Fundation (to Haiyan Qin). We apologized for uncited works due to limited space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Qin.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Bao, D., Tong, X. et al. The role of stem cells in benign tumors . Tumor Biol. 37, 15349–15357 (2016). https://doi.org/10.1007/s13277-016-5370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-5370-x

Keywords

Navigation