Skip to main content

Advertisement

Log in

Downregulation of the WT1 gene expression via TMPyP4 stabilization of promoter G-quadruplexes in leukemia cells

  • Original Article
  • Published:
Tumor Biology

Abstract

The WT1 gene is an important oncogene, and its overexpression is considered as an effective target for anticancer therapy. Regulation of its gene transcription is one way for WT1-targeting drug design. Recently, in silico analysis of some oncogene promoters like WT1 showed some guanine-rich regions with the ability to form G-quadruplex structures. Ligands like 5,10,15,20-tetra(N-methyl-4-pyridyl)-porphine (TMPyP4) have predominant effect on G-quadruplex stabilization. The aim of this study was to understand the effect of TMPyP4 on WT1 gene transcription via stabilization of promoter G-quadruplexes. We examined the formation of new G-quadruplex motifs in WT1 promoter in the presence of TMPyP4. In order to understand the nature of its interaction with WT1 promoter quadruplexes, differential pulse voltammetry (DPV), circular dichroism (CD), polyacrylamide gel electrophoresis, electrophoretic mobility shift assay (EMSA), polymerase chain reaction (PCR) stop assays, and quantitative RT-PCR were performed. According to the results, the WT1 promoter can form stable intramolecular parallel G-quadruplexes. In addition, after 48 and 96 h of incubation, 100 μM TMPyP4 reduced the WT1 transcription to 9 and 0.4 %, respectively, compare to control. We report that ligand-mediated stabilization of G-quadruplexes within the WT1 promoter can silence WT1 expression. This study might offer the basis for the reasonable design and improvement of new porphyrin derivatives as effective anti-leukemia agents for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang D, Okamoto K. Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med Chem. 2010;2:619–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Punchihewa C, Yang D. Therapeutic targets and drugs II: G-quadruplex and G-quadruplex inhibitors. In: Hiyama K, editor. Telomeres and telomerase in cancer. Totowa: Humana Press; 2009.

    Google Scholar 

  3. Qin Y, Hurley LH. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie. 2008;90:1149–71. doi:10.1016/j.biochi.2008.02.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumari S, Bugaut A, Huppert JL, Balasubramanian S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol. 2007;3:218–21. doi:10.1038/nchembio864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gehring K, Leroy JL, Guéron MA. Tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature. 1993;363:499–510. doi:10.1038/363561a0.

    Article  Google Scholar 

  6. Engelhart AE, Plavec J, Persil, O, Hud, NV. Metal ion interactions with G-quadruplex structures. Nucleic Acid–Metal Ion Interactions. RSC Publishing; 2008. p. 118–147.

  7. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci. 2002;99:11593–8. doi:10.1073/pnas.182256799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun D, Guo K, Rusche JJ, Hurley LH. Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 2005;33:6070–80. doi:10.1093/nar/gki917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. De Armond R, Wood S, Sun D, Hurley LH, Ebbinghaus SW. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter. Biochemistry. 2005;44:16341–50. doi:10.1021/bi051618u.

    Article  PubMed  Google Scholar 

  10. Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc. 2005;127:10584–9. doi:10.1021/ja050823u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, et al. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry. 2006;45:7854–60. doi:10.1021/bi0601510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenfeld C, Cheever MA, Gaiger A. WT1 in acute leukemia, chronic myelogenous leukemia and myelodysplastic syndrome: therapeutic potential of WT1 targeted therapies. Leukemia. 2003;17:1301–12. doi:10.1038/sj.leu.2402988.

    Article  CAS  PubMed  Google Scholar 

  13. Neidle S, Balasubramanian S. Quadruplex nucleic acids. Eds. Royal Society of Chemistry. Cambridge, UK; 2006.

  14. Patel DJ, Phan AT, Kuryavyi V. Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 2007;35:7429–55. doi:10.1093/nar/gkm711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren J, Chaires JB. Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry. 1999;38:16067–75.

    Article  CAS  PubMed  Google Scholar 

  16. Grand CL, Han H, Muñoz RM, Weitman S, Von Hoff DD, Hurley LH, et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther. 2002;1:565–73.

    CAS  PubMed  Google Scholar 

  17. Qin Y, Rezler EM, Gokhale V, Sun D, Hurley LH. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res. 2007;3:7698–713. doi:10.1093/nar/gkm538.

    Article  Google Scholar 

  18. del Toro M, Bucek P, Aviñó A, Jaumot J, González C, Eritja R, et al. Targeting the G-quadruplex-forming region near the P1 promoter in the human BCL-2 gene with the cationic porphyrin TMPyP4 and with the complementary C-rich strand. Biochimie. 2009;91:894–902. doi:10.1016/j.biochi.2009.04.012.

    Article  PubMed  Google Scholar 

  19. Nagesh N, Buscaglia R, Dettler JM, Lewis EA. Studies on the site and mode of TMPyP4 interactions with Bcl-2 promoter sequence G-quadruplexes. Biophys J. 2010;98:2628–33. doi:10.1016/j.bpj.2010.02.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Manaye S, Eritja R, Aviñó A, Jaumot J, Gargallo R. Porphyrin binding mechanism is altered by protonation at the loops in G-quadruplex DNA formed near the transcriptional activation site of the human c-kit gene. Biochim Biophys Acta Gen Subj. 2012;1820:1987–96. doi:10.1016/j.bbagen.2012.09.006.

    Article  CAS  Google Scholar 

  21. Cogoi S, Xodo LE. G-quadruplex formation within the promoter of the K-RAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 2006;34:2536–49. doi:10.1093/nar/gkl286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zidanloo SG, Hosseinzadeh Colagar A. Geographic heterogeneity of the AML1-ETO fusion gene in Iranian patients with acute myeloid leukemia. RBMB. 2014;3:1–7.

    CAS  Google Scholar 

  23. Shen H, Xu W, Wu Z, Tang H, Xie Y, Zhong X. Down-regulation of WT1/+ 17AA gene expression using RNAi and modulating leukemia cell chemotherapy resistance. Haematologica. 2007;92:1270–2.

    Article  CAS  PubMed  Google Scholar 

  24. Glienke W, Maute L, Koehl U, Esser R, Milz E, Bergmann L. Effective treatment of leukemic cell lines with wt1 siRNA. Leukemia. 2007;21:2164–70. doi:10.1038/sj.leu.2404878.

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Qu X, Wang P, Tian X, Luo Y, Liu S, et al. WT1 downregulation during K562 cell differentiation and apoptosis induced by bufalin. Zhonghua xue ye xue za zhi = Zhonghua xueyexue zazhi. 2002;23:356–9.

    CAS  PubMed  Google Scholar 

  26. Zapata-Benavides P, Tuna M, Lopez-Berestein G, Tari AM. Downregulation of Wilms’ tumor 1 protein inhibits breast cancer proliferation. Biochem Biophys Res Commun. 2002;295:784–90. doi:10.1016/S0006-291X(02)00751-9.

    Article  CAS  PubMed  Google Scholar 

  27. Navakanit R, Graidist P, Leeanansaksiri W, Dechsukum C. Growth inhibition of breast cancer cell line MCF-7 by siRNA silencing of Wilms tumor 1 gene. J Med Assoc Thai. 2007;90:2416–21.

    PubMed  Google Scholar 

  28. Clark AJ, Chan DC, Chen MY, Fillmore H, Dos Santos WG, Van Meter TE, et al. Down-regulation of Wilms’ tumor 1 expression in glioblastoma cells increases radiosensitivity independently of p53. J Neurooncol. 2007;83:163–72.

    Article  CAS  PubMed  Google Scholar 

  29. Zamora-Avila DE, Franco-Molina MA, Trejo-Avila LM, Rodríguez-Padilla C, Resendez-Perez D, Zapata-Benavides P. RNAi silencing of the WT1 gene inhibits cell proliferation and induces apoptosis in the B16F10 murine melanoma cell line. Melanoma Res. 2007;17:341–8. doi:10.1097/CMR.0b013e3282efd3ae.

    Article  CAS  PubMed  Google Scholar 

  30. Wagner N, Panelos J, Massi D, Wagner KD. The Wilms’ tumor suppressor WT1 is associated with melanoma proliferation. Pflugers Arch. 2008;455:839–47. doi:10.1007/s00424-007-0340-1.

    Article  CAS  PubMed  Google Scholar 

  31. Weisser M, Kern W, Rauhut S, Schoch C, Hiddemann W, Haferlach T, et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia. 2005;19:1416–23. doi:10.1038/sj.leu.2403809.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang R, Lin Y, Zhang CT. Greglist: a database listing potential G-quadruplex regulated genes. Nucleic Acids Res. 2008;36:D372–6. doi:10.1093/nar/gkm787.

    Article  CAS  PubMed  Google Scholar 

  33. Fraizer GC, Wu YJ, Hewitt SM, Maity T, Ton CC, Huff V, et al. Transcriptional regulation of the human Wilms’ tumor gene (WT1). Cell type-specific enhancer and promiscuous promoter. J Biol Chem. 1994;269:8892–900.

    CAS  PubMed  Google Scholar 

  34. Lemarteleur T, Gomez D, Paterski R, Mandine E, Mailliet P, Riou JF. Stabilization of the c-myc gene promoter quadruplex by specific ligands’ inhibitors of telomerase. Biochem Biophys Res Commun. 2004;323:802–8. doi:10.1016/j.bbrc.2004.08.150.

    Article  CAS  PubMed  Google Scholar 

  35. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, et al. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 1988;48:589–601.

    CAS  PubMed  Google Scholar 

  36. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16:2115–21. doi:10.1038/sj.leu.2402675.

    Article  CAS  PubMed  Google Scholar 

  38. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20:600–5.

    CAS  PubMed  Google Scholar 

  39. Green MR, Sambrook J. Molecular cloning a laboratory manual. 4th ed. New York: Cold Spring Harbor Laboratory Press; 2012.

    Google Scholar 

  40. Kikin O, D’Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34:W676–82. doi:10.1093/nar/gkl253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chiorcea-Paquim AM, Santos PV, Eritja R, Oliveira-Brett AM. Self-assembled G-quadruplex nanostructures: AFM and voltammetric characterization. Phys Chem Chem Phys. 2013;15:9117–24. doi:10.1039/c3cp50866h.

    Article  CAS  PubMed  Google Scholar 

  42. Miyoshi D, Nakao A, Sugimoto N. Structural transition from antiparallel to parallel G-quadruplex of d(G4T4G4) induced by Ca2+. Nucleic Acids Res. 2003;31:1156–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hurley LH. Secondary DNA, structures as molecular targets for cancer therapeutics. Biochem Soc Trans. 2001;29:692–6. doi:10.1042/bst0290692.

    Article  CAS  PubMed  Google Scholar 

  44. Sun D, Liu WJ, Guo K, Rusche JJ, Ebbinghaus S, Gokhale V, et al. The proximal promoter region of the human vascular endothelial growth factor gene has a G-quadruplex structure that can be targeted by G-quadruplex–interactive agents. Mol Cancer Ther. 2008;7:880–9. doi:10.1158/1535-7163.MCT-07-2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Han H, Langley DR, Rangan A, Hurley LH. Selective interactions of cationic porphyrins with G-quadruplex structures. J Am Chem Soc. 2001;123:8902–13. doi:10.1021/ja002179j.

    Article  CAS  PubMed  Google Scholar 

  46. Taka T, Joonlasak K, Huang L, Randall Lee T, Chang SW, Tuntiwechapikul W. Down-regulation of the human VEGF gene expression by perylene monoimide derivatives. Bioorg Med Chem Lett. 2012;22:518–22. doi:10.1016/j.bmcl.2011.10.089.

    Article  CAS  PubMed  Google Scholar 

  47. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84:3071–9.

    CAS  PubMed  Google Scholar 

  48. Dailey L, Hanly SM, Roeder RG, Heintz N. Distinct transcription factors bind specifically to two regions of the human histone H4 promoter. Proc Natl Acad Sci U S A. 1986;83:7241–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dailey L, Roberts SB, Heintz N. Purification of the human histone H4 gene-specific transcription factors H4TF-1 and H4TF-2. Genes Dev. 1988;2:1700–12. doi:10.1101/gad.2.12b.1700.

    Article  CAS  PubMed  Google Scholar 

  50. Nakken S, Rognes T, Hovig E. The disruptive positions in human G-quadruplex motifs are less polymorphic and more conserved than their neutral counterparts. Nucleic Acids Res. 2009;37:5749–56. doi:10.1093/nar/gkp590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huppert JL. Hunting G-quadruplexes. Biochimie. 2008;90:1140–8. doi:10.1016/j.biochi.2008.01.014.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abasalt Hosseinzadeh Colagar.

Ethics declarations

Conflicts of interest

None

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidanloo, S.G., Hosseinzadeh Colagar, A., Ayatollahi, H. et al. Downregulation of the WT1 gene expression via TMPyP4 stabilization of promoter G-quadruplexes in leukemia cells. Tumor Biol. 37, 9967–9977 (2016). https://doi.org/10.1007/s13277-016-4881-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-016-4881-9

Keywords

Navigation